DOI QR코드

DOI QR Code

Effect of nanosilica and TEOS in hydrophilic coating solution on the surface characteristics of solar cell glass panel

나노실리카와 TEOS가 함유된 친수성 코팅액의 태양광 유리팬널에 미치는 표면 특성 연구

  • Lee, Soo (Department of Chemical Engineering, Changwon National University) ;
  • Kim, Seung Hye (Department of Chemical Engineering, Changwon National University) ;
  • Hwang, Heon (Department of Bio-Mechatronics Engineering, Sungkyunkwan University)
  • 이수 (창원대학교 화공시스템공학과) ;
  • 김승혜 (창원대학교 화공시스템공학과) ;
  • 황헌 (성균관대학교 생명공학부 바이오메카트로닉스전공)
  • Received : 2017.02.14
  • Accepted : 2017.03.30
  • Published : 2017.03.30

Abstract

A hydrophilic coating solution was prepared by adding a silane coupling agent and a nano-inorganic oxide in aqueous surfactant solution to increase the efficiency of photovoltaic power generation due to the introduction of antifogging and antifouling properties on the glass surface of the solar cell module. Addition of $Ludox^{(R)}$, a nano-inorganic oxide, to 1% hydrophilic coating solution showed improved hydrophilicity and excellent antifogging effect regardless of $Ludox^{(R)}$ concentration. However, the antifouling effect on the glass surface was showed only when Ludox was added more than 10%. In the case of addition of 0.7% of hydrolyzed TEOS at pH 4, the antifogging effect was maintained as a result of the steam test as well as the antifouling effect even after the coated glass surface was rubbed 100 times with a wet Kimwipe. In addition, from the surface roughness ($R_q$) calculated using AFM data, the higher surface roughness with irregular surface shape was obtained with the higher concentration of TEOS. The addition of 0.7% of TEOS showed relatively high surface roughness and well organized surface condition which can help to improve transmittance of light. In conclusion, $Ludox^{(R)}$ is not required only for the antifogging property. However, at least 10% of Ludox should be added to show antifouling effect and 0.7% of TEOS should be added for good durability.

태양광 발전의 효율을 높이기 위한 실란 커플링제와 나노 무기산화물을 첨가한 계면활성제를 이용한 친수성 코팅액을 제조하여 태양광 모듈의 유리 표면에 도포하여 김서림 방지(antifogging) 및 내오염성(antifouling)을 부여하였다. 1% 친수성 코팅액에 나노 무기산화물인 $Ludox^{(R)}$를 첨가한 경우 $Ludox^{(R)}$의 농도에 관계없이 초친수성과 우수한 antifogging 효과를 나타내었다. 그러나 유리에 대한 antifouling 효과는 $Ludox^{(R)}$를 10% 이상 첨가하였을 때부터 발현되었다. 또한, pH 4에서 가수분해한 TEOS를 첨가한 코팅액의 경우 TEOS를 0.7% 첨가한 경우 steam test 결과 antifogging 효과를 유지하였으며, 코팅한 유리 표면을 젖은 킴와이프로 100회 문지른 후에도 pollution test 결과 antifouling 효과를 유지하였다. 또한, AFM을 이용하여 표면 거칠기($R_q$)를 확인한 결과 TEOS를 너무 많이 첨가하면 가장 높은 표면 거칠기 값을 보였으며 코팅된 표면의 상태도 매우 불규칙하였다. TEOS가 0.7% 첨가된 경우 비교적 높은 표면 거칠기 값과 안정된 표면 상태를 나타내었다. 결론적으로 김서림 방지 특성만을 위하여는 나노 무기산화물인 $Ludox^{(R)}$는 필요없으나, antifouling의 효과를 나타내기 위해서는 최소 10%의 $Ludox^{(R)}$가 첨가되어야 하며, 우수한 내구성을 나타내기 위해서는 0.7%의 TEOS를 첨가해야 한다.

Keywords

References

  1. H. Hanaei, M. K. Assadim, and R. Saidur, Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes (CNTs) into solar cells: A review, J. Renew. and Sustain. Energy Rev., 59, 620-635(2016). https://doi.org/10.1016/j.rser.2016.01.017
  2. S. Biryukov, An experimental study of the dry deposition mechanism for air- borne dust, J. Aerosol. Sci., 29, 129-139(1998). https://doi.org/10.1016/S0021-8502(97)00037-2
  3. G. A. Mastekbayeva, and S. Kumar, Effect of dust on the transmittance of low density polyethylene glazing in a tropical climate, Sol. Energy, 68, 135-141(2000). https://doi.org/10.1016/S0038-092X(99)00069-9
  4. H. K. Elminir, A. E. Ghitas, R. H. Hamid, F. El-Hussainy, M. M. Beheary, and K. M. Abdel-Moneim, Effect of dust on the transparent cover of solar collectors, Energy Convers Manag., 47, 3192-203 (2006). https://doi.org/10.1016/j.enconman.2006.02.014
  5. F. M. Zaihidee, S. Mekhilef, M. Seyedmahmoudian, and B. Horan, Dust as an unalterable deteriorative factor affecting PV panel's efficiency: Why and how, J. Renew. and Sustain. Energy Rev., 65, 1267-1278(2016). https://doi.org/10.1016/j.rser.2016.06.068
  6. S. H. Euh, and D. H. Kim, The performance and efficiency analysis of PVT system : A Review, J. Kor. Solar Energy Soc., 31(3), 57-66(2011). https://doi.org/10.7836/kses.2011.31.3.057
  7. T. Lorenz, E. Klimm, and K. -A. Weiss, Soiling and Anti-soiling Coatings on Surfaces of Solar Thermal Systems- Featuring an Economic Feasibility analysis, Energy Procedia, 48, 749-756(2014). https://doi.org/10.1016/j.egypro.2014.02.087
  8. J. K. Kaldellis, and A. Kokala, Quantifying the decrease of the photovoltaic panels' energy yield due to phenomena of natural air pollution disposal, J. Energy, 35, 4862-4869(2010). https://doi.org/10.1016/j.energy.2010.09.002
  9. J. K. Park, K. C. Song, H. U. Kang, and S. H. Kim, Preparation of Hydrophilic Coating Film Using GPS (Glycidoxypropyl Trimethoxysilane), J. HWAHAK KONGHAK, 40(6), 735-740(2002).
  10. K. C. Song, H, J, K. Park, H. U. Kang, and S. H. Kim Synthesis of Hydrophilic Coating Solution for Polymer Substrate Using Glycidoxypropyltrimethoxysilane, J. Sol-Gel Sci. Techn., 27(1), 53-59(2003). https://doi.org/10.1023/A:1022679910313
  11. 3M Innovative Properties Company, Hydrophilic coatings, articles, coating compositions and methods, U. S. Pat. 9,034,489 B2(2015).
  12. R. Tang, A. Muhammad, J. Yang, and J. Nie, Preparation of antifog and antibacterial coatings by photopolymerization, J. Polym. for Adv. Techn., 25(6), 651-656(2014). https://doi.org/10.1002/pat.3267
  13. Q. Shang, and Y. Zhou, Fabrication of transparent superhydrophobic porous silica coating for self-cleaning and anti-fogging, J. Ceramics International, 42, 8706-8712 (2016). https://doi.org/10.1016/j.ceramint.2016.02.105
  14. D. Ebert, and B. Bhushan, Transparent, Superhydrophobic, and Wear-Resistant Coatings on Glass and Polymer Substrates Using $SiO_2$, ZnO, and ITO Nanoparticles, Langmuir, 28(31), 11391-11399(2012). https://doi.org/10.1021/la301479c
  15. D. I. Lee, J. L. Park, K. P. Park, S. H. Jang, and K. C. Song, Effects of APS(aminopropyltriethoxysilane) Addition on the properties of hydrophilic coating films, J. Sol-Gel Sci. and Techn., 42, 690-695(2004).
  16. J. Y. Kim, J. S. Lee, J. H. Hwang, T. Y. Lim, M. J. Lee, S. K. Hyun, and J. H. Kim, Fabrication of Hydrophobic Anti-Reflection Coating Film by Using Sol-gel Method, Kor. J. Mat. Res., 24(12), 689-693(2014). https://doi.org/10.3740/MRSK.2014.24.12.689
  17. W. B. Chae, D. Y. Seong, C. S. Kim, and S. K. Seo, Detergency Performance Evaluation of Organic Adherent Pollutant by Modified Silicate-Based Antifouling Coating Material, J. Korea Institute of Builing Construction, 12(1), 275-278 (2012). https://doi.org/10.5345/JKIBC.2012.12.3.275
  18. H. N. Jang, I. C. Kim, and Y. T. Lee, Membrane Permeation Characteristics and Fouling Control through the Coating of Poly(vinyl alcohol) on PVDF Membrane Surface, J. Membrane, 24(4), 276-284 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.276
  19. D. K. Kim, M. S. Cha, J. E. Lee, K. W. Lee, and S. B. Lee, Surface properties of water-repellency coating films and their durability effects, J. Appl. Chem., 5(1), 76-79(2001).
  20. S. J. Jeon, W. Kim, J. J. Lee, and S. M. Koo, Preparation and Characterization of Hard Coating Materials Based on Silane Modified Boehmite Hybrid Materials, J. Ind. Eng. Chem., 17(6), 580-585(2006).
  21. S. Lee, S. I. Chan, and H. Hwang, Effect of proton concentration in TEOS to improve durability of hydrophilic and high light transmittance properties of nanosilica coating, J. of Korean Oil Chemists' Soc., 33(3), 483-491(2016). https://doi.org/10.12925/jkocs.2016.33.3.483