• Title/Summary/Keyword: 치유 캡슐

Search Result 36, Processing Time 0.02 seconds

Self Healing System for Concrete Surface Crack using Polymer based Coating Agent Incorporating Microencapsulated Healing Agent (마이크로캡슐을 함유한 폴리머 코팅제의 콘크리트 표면균열 자기치유시스템)

  • Shin, Ki-Su;Ryu, Byung-Chul;Wang, Xiao-Yong;Park, Ki-Bong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.579-587
    • /
    • 2015
  • In this paper, microencapsulated healing agent was embedded in the polymer matrix to obtain self healing properties. Microencapsulation of methacrylate using polyurea-formaldehyde as a shell material and studied the effect of agitation rate on capsule characteristics such as size, shell thickness, and surface morphology. The formation of microcapsules was confirmed by FTIR and TGA, and capsule characteristics were studied by optical microscopy and SEM. The self-healing effect was evaluated using permeability measurements and further confirmed by surface analytical tools including optical microscope. According to the experimental results, the microencapsulated healing system has the self-heaing ability for artificial cracks.

An Experimental Study on the Mechanical Healing Properties of Self-Healing Mortar with Solid Capsules Using Crystal Growth Type Inorganic Materials (결정성장형 무기재료 활용 고상 캡슐을 혼합한 자기치유 모르타르의 역학적 치유 특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Nam, Eun-Joon;Oh, Sung-Rok;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.581-589
    • /
    • 2020
  • In this paper, a solid capsule was prepared using a crystal growth type inorganic material capable of hydration reaction, the quality and mechanical healing properties of self-healing mortar with solid capsules were evaluated. Solid capsules were mixed 5% by mass of cement. Reloading test results of compressive load, it was found to improve about 20% on average for the natural healing effect of Plain, in the case of the elastic range, the healing rate was about 79% at the 7 days of healing age and 98% at the 28 days of healing age. Reload test results of flexural load, in the case of the elastic range, the healing rate was about 79% at the 7 days of healing age and 98% at the 28 days of healing age. Through these results, it is judged that the healing performance of solid capsules has also an effect on mechanical healing properties such as strength in addition to the durability properties obtained by the permeability test. Since the strength tends to decrease as the solid capsules are mixed, it is considered necessary to compensate.

An Experimental Study on the Quality and Crack Healing Properties of Self-Healing Mortar Containing Solid Capsules using Crystal Growth Type Inorganic Materials (결정성장형 무기재료 활용 고상 캡슐을 혼합한 자기치유 모르타르의 품질 및 균열 치유 특성에 관한 실험적 연구)

  • Oh, Sung-Rok;Kim, Cheol-Gyu;Nam, Eun-Joon;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.120-128
    • /
    • 2020
  • In this study, solid capsules using crystal growth-type inorganic materials that can be directly mixed with mortar were prepared. Thus, three levels of solid capsules were prepared. The prepared solid capsule was mixed with 3% of the cement mass, was evaluated quality and crack healing properties of the mortar. As a test results of the table flow and air content of the mortar mixed with the solid capsules showed that mix of the solid capsules was no effect on the table flow and air volume. As a test result of the crack healing properties of the mortar mixed with the solid capsule according to water flow test and crack closing test, the initial flow rate was decreased, it was confirmed that the reaction product occurred over time and the cracks were healed.

Experimental Study on the Quality Properties of Precast Concrete Utilizing Self-Healing Capsules as an Essential Technology for Smart City Implementation (스마트 시티 구현을 위한 요소기술로써 균열 자기치유 캡슐 활용 프리캐스트 콘크리트의 품질특성 평가에 관한 실험적 연구)

  • Sung-Rok Oh;Eun-Joon Nam;Neung-Won Yang;Yun-Wang Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.568-575
    • /
    • 2023
  • This paper aims to evaluate the quality characteristics and healing performance of precast concrete incorporating self-healing technology as a key technique for the construction of smart cities. The study found that precast concrete mixed with hybrid capsules exhibited a tendency of reduced slump and air content, impacting the quality characteristics. Specifically, the slump decreased by up to 14 %, and the air content by up to 9 %. Moreover, the inclusion of hybrid capsules in the concrete resulted in a maximum decrease of 16 % in compressive strength and 18 % in flexural strength. However, the introduction of hybrid capsules significantly enhanced the crack healing performance. The assessment through water permeability tests showed that the healing rate of 0.3 mm crack width after a 28-day healing period improved as the mixing ratio increased, with the healing rates at 1 %, 3 %, and 5 % hybrid capsule mixtures observed to increase by approximately 16 %, 25 %, and 32 %, respectively.

Preparation of Isophorone Diisocyanate-loaded Microcapsules and Their Application to Self-healing Protective Coating (Isophorone Diisocyanate 함유 마이크로캡슐의 제조와 자기치유형 보호코팅재에의 응용)

  • Lim, Ye-Ji;Song, Young-Kyu;Kim, Dong-Min;Chung, Chan-Moon
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.56-63
    • /
    • 2015
  • The object of this study is to prepare microcapsules containing a diisocyanate compound, apply them to self-healing protective coating, and evaluate the self-healing capability of the coating by atmospheric moisture. Isophorone diisocyanate (IPDI) polymerized under humid atmosphere, indicating that IPDI can be used as a healing agent. Microencapsulations of IPDI were conducted via interfacial polymerization of a polyurethane prepolymer with diol compounds. The formation of microcapsules was confirmed by Fourier-transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. The mean diameter, size distribution, morphology and shell wall thickness of microcapsules were investigated by optical microscopy and scanning electron microscopy (SEM). The properties of microcapsules were studied by varying agitation rates and diol structure. The self-healing coatings were prepared on test pieces of CRC board. When scratch was generated in the coatings, the core material flew out of the microcapsules and filled the scratch. The self-healing coatings were damaged and healed under atmosphere with 68~89% relative humidity for 48 h, and SEM and impermeability test for the specimens showed that the scratch could be healed by atmospheric moisture.

A Fundamental Study on the Influence of Performance of Cementitious Composites of Inorganic Core Material for Self-Healing Capsule of Cracks (균열 자기치유를 위한 캡슐용 무기계 코어재료의 시멘트 복합체 성능에 미치는 영향에 관한 기초적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Choi, Byung-Keol;Kim, Cheol-Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.74-82
    • /
    • 2017
  • In this study, we prepared a core material based on the inorganic materials in liquid form for applying an inorganic-based core material to a core material for the self-healing capsules as a part of the basic study to manufacture of self-healing capsule that can heal cracks of cementitious composite. Manufactured core material based on the inorganic materials were applied directly to the cement composite before its encapsulation, were evaluated the effect on performance of cementitious composite as wall as repair performance of the cracks in the cracks. The test results showed that core material based on the inorganic materials was effective to improve the compressive and adhesion strength, had an absorption, permeation water, penetration of chloride iones and freeze-thaw resistance performance. Through the results of this paper, we want to utilize the results as a basis data of the performance of the cement composite that can be obtained when applied to inorganic core materials based on self-healing capsules and future advances localized self-healing capsule technology.

Study on Self-Healing Asphalt Containing Microcapsule (마이크로캡슐이 내재된 자기치유 아스팔트에 관한 연구)

  • Kwon, Young-Jin;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.232-240
    • /
    • 2013
  • Microcapsules having healing agent were prepared in which 2,6-dimethylphenol (DMP) as a healing agent forms the core and melamine/formaldehyde resin forms the shell. Microcapsule-contained asphalts showed better mechanical properties than non-contained ones. And as the rest time passed the impact strength of microcapsule-contained asphalt was getting higher than that of asphalt without the microcapsule. As the rest time of 15 days passed, the original strength was restored. This tells that microcapsule-contained asphalt had the ability of self-healing. X-ray photos proved that DMP on asphalt fracture surface, which were burst out of the microcapsules when cracks occurred on asphalt, were polymerized to polyphenyleneoxide and this PPO covered the crack and healed the damage.

Healing Performance of Concrete Containing Hybrid Self-healing Materials (하이브리드 자기치유 소재를 혼입한 콘크리트의 치유성능)

  • Mih-ho, Hwang;Hyuk, Kwon;Hyung-Suk, Kim;Sung, Choi;Kwang-Myong, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.569-576
    • /
    • 2022
  • In this study, the healing performance of hybrid self-healing concrete was investigated by mixing bacterial pellets(BP) and solid phase capsules(SC), respectively, based on organic-inorganic self-healing material(MC). Constant water head permeability test was applied as a method of evaluating the healing performance, and the healing rate and the healed crack width calculated by the equivalent crack width were used as evaluation indicies. As a result of the water permeability test, when the initial crack width was 0.3 mm, the healing rates of MC-BP and MC-SC were 2.1~3.0 %pt higher than that of MC, and the healed crack width of hybrid concrete increased by 0.017~0.018 mm. In conclusion, it was found that the self-healing performance was not significantly improved even if the two types of healing materials are used together.

A Study on Remaining Formaldehyde Concentration in the Synthesis of Self-Healing Microcapsules (자기치유성 마이크로캡슐 합성 공정에서의 포름알데히드 잔류량 연구)

  • Kim, Dong-Min;Lee, Jun-Seo;Ryu, Byung-Cheol;Chung, Chan-Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.129-133
    • /
    • 2020
  • The concentration of remaining formaldehyde contained in waste liquid emitted from the process of urea-formaldehyde microcapsule synthesis was analyzed by gas chromatography-mass spectrometry (GC-MS). Three factors that can affect on the reaction of formaldehyde were selected including pH, ammonium chloride input and temperature. The effect of these factors on the concentration of remaining formaldehyde was studied. When ammonium chloride input was 0.025g, microcapsules could not be obtained or core substance leaked out because of weak shell, and therefore this reaction condition would be inadequate. It was confirmed that the concentration of remaining formaldehyde could be minimized when the microencapsulation was conducted at 70℃ and pH 2.5 by using a ammonium chloride input of 0.050g. This study can make contribution to UF microencapsulation in safer working environment.

Experimental Study on the Manufacturing and Waterproofing Properties of Self-healing Concrete Waterproofing Agent Using Microcapsules (마이크로캡슐을 활용한 자기치유 구체방수제의 제조 및 방수특성에 관한 실험적 연구)

  • Yun-Wang Choi;Jae-Heun Lee;Neung-Won Yang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.289-298
    • /
    • 2023
  • In this study, the development of a self-healing concrete waterproofing agent was examined, focusing on its manufacturing and waterproofing properties. The optimal ratio using microcapsules for the concrete waterproofing agent was determined through assessments of flow, compressive strength, and permeability conducted during the mortar stage. These findings aimed to provide fundamental data for evaluating the self-healing properties of the concrete waterproofing agent designed for use in concrete structures. The self-healing concrete waterproofing agent was comprised of three types of inorganic materials commonly used for repair purposes. From experimental results, a composition ratio with a high potassium silicate content, referred to as SIM-2, was found suitable. A surfactant mixing ratio of 0.03 % was identified to enhance the dispersibility of the concrete waterproofing agent, while a mixing ratio of 0.2 % distilled water was deemed suitable for viscosity adjustment. For the magnetic self-healing concrete waterproofing agent's healing agent, using microcapsules in the range of 0.5 % to 0.7 % met the KS F 4949 and KS F 4926 standards.