• Title/Summary/Keyword: 치료 초음파

Search Result 698, Processing Time 0.028 seconds

Treatment of Shoulder Pain Using Ultrasound-Guided Intervention (초음파 유도하 중재술을 이용한 견관절 통증의 치료)

  • Kim, Myung-Sun;Moon, Eun-Sun
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.4 no.1
    • /
    • pp.50-58
    • /
    • 2011
  • Ultrasound-guided intervention is very safe and useful for the treatment of shoulder pain. Injection techniques vary according to the diseases causing shoulder pains. This review tried to describe various methods of the ultrasoundguided intervention around the shoulder joint.

  • PDF

Endoscopic Therapy for Pancreatic Benign Neoplasms (췌장 양성 종양의 내시경적 치료)

  • Hwang, Jun Seong;Ko, Sung Woo
    • Journal of Digestive Cancer Reports
    • /
    • v.9 no.1
    • /
    • pp.25-32
    • /
    • 2021
  • Since Endoscopic ultrasound (EUS) was introduced in the 1980s, EUS has evolved from a diagnostic tool to a therapeutic modality for patients with pancreatic neoplasms. Traditionally, treatment policy of pancreatic benign neoplasms (PBN) has been a dichotomous approach to observation or surgery. However, EUS guided treatment provides an alternative option with minimally invasiveness for patients with PBN. This review aimed to provide the role of EUS guided treatment for PBN.

Multi-element Ultrasound Applicator for the Treatment of Cancer in Uterus and Cervix (자궁암 치료용 다채널 초음파 온열치료기)

  • Lee Rena
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.16-23
    • /
    • 2005
  • The objective of this study was to construct multi-element ultrasound applicators for the treatment of gynecologic cancer with high dose rate brachytherapy. For the treatment of uterus, piezo-ceramic crystal transducer (PZT -5A) with outer diameter of 4 mm, wall thickness of 1.3 mm, and length of 24.5 mm was selected. For the treatment of cervix or vagina, it should be possible to insert the applicator into the vagina. Thus, a cylindrical PZT -8 material with outer diameter of 24.5 mm, wall thickness of 1.3 mm, and length of 15.2 mm was selected. The operating frequencies determined by vector impedance measurement were 3.2 MHz for the PZT 5A cylinder (OD=4 mm) and 1.7 MHz for the PZT -8 cylinder (OD: 24.5 mm). The ratios of generated acoustic output power to applied electric power were 33% and 61% for the tandem type crystal and the cylinder type crystal, respectively. The radiated acoustic pressure fields from both transducers were calculated using a Matlab code and measured in water using hydrophone. There was good agreement between measured and calculated acoustic pressure field distribution. For a tandem type transducer, the calculated acoustic pressure field decreased from 0.023 MPa at 10 mm to 0.010 Mpa at 30 mm, the reduction of 57%. For the cylinder type transducer which will be used for the treatment of vagina showed 78% reduction at 15 mm and 66% at 25 mm as compared to values at 5 mm from the surface. Based on the characteristics of the transducers, this study demonstrated the possibility of using the crystals as a heating source. Finally, a 3-element and 4-element prototype applicators were constructed. The 3-element applicator is 75 mm long and 4 mm thick and will be used for the treatment of uterus. The 4-element applicator is 61 mm long and 24.5 mm thick and will be used for the treatment of vagina. Using these applicators, it is possible to generate enough power to increase temperature to therapeutic level.

  • PDF

Effects of Prolotherapy on Medial Collateral Ligament Bursitis of the Knee Joint Identified with High Resolution Ultrasound (고해상도 초음파로 추시된 슬관절 내측측부인대 점액낭염에 대한 증식치료의 효과)

  • Kim, Eung-Rok
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.5
    • /
    • pp.469-473
    • /
    • 2019
  • Medial knee joint pain is a common problem in the field of orthopedics. In these patients, a high resolution ultrasound examination can reveal medial collateral ligament (MCL) bursitis, meniscal cyst, degeneration changes to the MCL and meniscal protrusion etc. Prolotherapy is effective in these patients. The author performed prolotherapy for MCL bursitis of the knee joint, and confirmed the disappearance of the bursitis using high resolution ultrasound.

Ultrasound-guided Exact Focusing of Extracorporeal Shock Wave Therapy for the Calcific Tendinitis of Gluteus Medius - A Case Report - (중둔건 석회화 건염의 초음파 유도하 정확한 조준에 의한 체외충격파치료 -증례 보고-)

  • Moon, Sang Ho;Lee, Song;Kim, Kwang Hai;Jeong, Jongpil;Hong, Seong Won
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.5 no.2
    • /
    • pp.94-98
    • /
    • 2012
  • Calcific tendinitis is characterized by inflammation around calcium hydroxyapatite crystal deposits. Minimally invasive extracorporeal shock wave therapy (ESWT) has been postulated to be an effective treatment option for treating calcific tendinitis. In clinical practice, shock waves usually are aimed at the painful area after palpation and not focused. It has been known that exact fluoroscopic focusing of ESWT at the calcific deposit for treatment of calcifying tendinopathy is highly effective. Ultrasound is a simple, inexpensive and radiation-free diagnostic tool that has been used to demonstrate tendinopathy including calcific tendinitis. However, focusing of shock wave under ultrasound is less well established. We present a patient in whom large calcific tendinitis of gluteus medius was completely resolved by exact focusing of ESWT by ultrasound with literature review.

  • PDF

A Study on the Efficiency Evaluation of Ultrasound Therapy Using Varicose Vein Simulated Tissue Phantom and Tissue Equivalent Phantom (하지정맥류 모사 생체조직 팬텀과 조직등가 팬텀을 이용한 초음파 치료효과 평가에 관한 연구)

  • Kim, Ju-Young;Jung, Tae-Woong;Shin, Kyoung-Won;Noh, Si-Cheol;Choi, Heung-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.427-433
    • /
    • 2018
  • Because of the expectation of the non-invasive treatment effect, Various studies on the treatment of varicose veins using focused ultrasound are reported. In this study, the bio-tissue phantom and tissue equivalent phantom that can be applied to estimation of ultrasonic varicose veins treatment effect. Each phantom was evaluated for its usefulness by evaluating the acoustic characteristics and the shrinkage rate according to the ultrasonic irradiation. A multi-layer structure phantom with three layers of skin, fat, and muscle was constructed considering the structure of the tissue where the varicose veins occurred. The materials constituting each layer were made to have characteristics similar to human body. In addition, the multi-layered phantoms with blood vessel mimic tube, with bovine blood vessel, and with animal tissue were fabricated. The degree of shrinkage of blood vessel mimic material and vascular tissue according to ultrasonic irradiation was evaluated using B-mode image. As the results of this study, it was thought that the proposed phantom could be used effectively in the evaluation of ultrasonic varicose veins treatment. In addition, it is thought that these phantoms could be applied to the development of varicose vein treatment device using the focused ultrasound and the verification of the therapeutic effect.

Study of Focusing Characteristics of Ultrasound for Designing Acoustic Lens in Ultrasonic Moxibustion Device (뜸 자극용 초음파 치료기기의 음향렌즈 설계를 위한 초음파 집속 특성 연구)

  • Bae, Jae-Hyun;Song, Sung-Jin;Kim, Hak-Joon;Kim, Ki-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.134-140
    • /
    • 2015
  • Traditional moxibustion therapy can cause severe pain and leave scarring burns at the moxibustion site as it relies on the practitioner's subjective and qualitative treatment. Recently, ultrasound therapy has received attention as an alternative to moxibustion therapy owing to its objectiveness and quantitative nature. However, in order to convert ultrasound energy into heat energy, there is a need to precisely understand the ultrasound-focusing characteristics of the acoustic lens. Therefore, in this study, an FEM simulation was performed for acoustic lenses with different geometries a concave lens and zone lens as the geometry critically influences ultrasound focusing. The acoustic pressure field, amplitude, and focal point were also calculated. Furthermore, the performance of the fabricated acoustic lens was verified by a sound pressure measurement experiment.

High-intensity focused ultrasound beam path visualization using ultrasound imaging (초음파 영상을 이용한 고강도 집중 초음파 빔 시각화)

  • Song, Jae Hee;Chang, Jin Ho;Yoo, Yang Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • In High-Intensity Focused Ultrasound (HIFU) treatment, effective localization of HIFU focus is important for developing a safe treatment plan. While Magnetic Resonance Imaging guided HIFU (MRIgHIFU) can visualize the ultrasound path during the treatment for localizing HIFU focus, it is challenging in ultrasound imaging guided HIFU (USIgHIFU). In the present study, a real-time ultrasound beam visualization technique capable of localizing HIFU focus is presented for USIgHIFU. In the proposed method, a short pulse, with the same center frequency of an imaging ultrasound transducer below the regulated acoustic intensity (i.e., Ispta < 720 mW/㎠), was transmitted through a HIFU transducer whereupon backscattered signals were received by the imaging transducer. To visualize the HIFU beam path, the backscattered signals underwent dynamic receive focusing and subsequent echo processing. From in vitro experiments with bovine serum albumin gel phantoms, the HIFU beam path was clearly depicted with low acoustic intensity (i.e., Ispta of 94.8 mW/㎠) and the HIFU focus was successfully localized before any damages were produced. This result indicates that the proposed ultrasound beam path visualization method can be used for localizing the HIFU focus in real time while minimizing unwanted tissue damage in USIgHIFU treatment.

A Study on Development of Composite Ultrasonic Transducer Assembly with Drug Transfer Function (약물 이송기능을 갖는 복합구조 초음파 변환기 어셈블리 개발에 관한 연구)

  • Noh, Si-Cheol;Kim, Ju-Young;Yoo, Byeong-Cheol;Jung, Bong-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.353-359
    • /
    • 2017
  • The sonophoresis, a representative low-intensity ultrasonic therapy, is a technique for delivering the drugs into the epidermis, dermis and skin appendages by using physical vibration and heat effects of the ultrasonic waves. Sonophoresis could increases the delivering and absorption efficiency of the drugs usually consisting of hydrophilic molecules and macromolecules. In addition, it has the advantage of being effective in delivering drugs with relatively large molecular sizes such as insulin or lipid. In this study, we proposed a multi-structure ultrasonic transducer assembly with a large-size single piezoelectric element and a drug delivery function at the treatment site for efficient sonophoresis treatment. Futhermore, a transducer assembly structure capable of raising and maintaining the temperature of the treatment site was proposed and evaluated for effectiveness. The transducer assembly proposed in this study is expected to improve the efficiency of sonophoresis by providing a constant amount of drug, and assisting drug delivery through heating the treatment site.