• Title/Summary/Keyword: 치료계획장치

Search Result 203, Processing Time 0.027 seconds

Evaluation of the Usefulness for VMAT of multiple brain metastasis using jaw tracking (Jaw tracking을 이용한 다발성 뇌 전이의 용적세기조절회전치료에 대한 유용성 평가)

  • Kim, Tae Won;Yoo, Soon Mi;Jeon, Soo Dong;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.73-81
    • /
    • 2018
  • Purpose : The aims of this study were to compare and assess the effectiveness of Volumetric Modulated Arc Therapy(VMAT) using jaw tracking(JT) and fixed jaw(FJ) in radiation therapy of multiple brain metastasis. Methode and material : Among the patients with Multiple Brain Metastasis treated with jaw tracking, 10 patients with more than 6 tumors and with the size of radiation field $14{\times}14cm^2$ or more were included. Each Treatment plans with jaw tracking(JT) and fixed jaw(FJ) was established with Eclipse (Ver. 13.6 Varian, USA). Gamma Index (3 mm, 3 % confidence interval - 95 %) and maximum dose difference were measured with an electronic portal imaging device(EPID). The $D_{max}$ and $D_{mean}$ of Organ At Risk(OAR) were assessed and compared, and the Conformity Index(CI) and Homogeneity Index(HI) were evaluated. Result : Evaluating jaw tracking(JT) and fixed jaw(FJ) outcomes, in all cases, Gamma Index met the permissible standard of 3 mm, 3 % confidence intervals of 95 %. The maximum dose difference value from the areas with leaf end transmission was measured at a maximum of 98.4 % and an average of 43.6 % in clockwise(CW), and 67.9 % and 41.0 % for each in Counter-Clockwise(CCW). With jaw tracking, the maximum value of $D_{max}$ for each normal organ in OAR decreased in 15.36 %~74.59 % with the average value decreasing in 2.84 %~39.80 %. The maximum value of $D_{mean}$ in OAR decreased in 27.90 %~65.23 %, with the average value decreasing in 7.70 %~41.71 %. No change has been found in Conformity Index and Homogeneity Index values. Conclusion : When Jaw tracking is used in treating patients with multiple brain metastasis with VMAT, the unnecessary exposure due to leakage and transmission of radiation in unspecified areas was reduced, without affecting the dose distribution of the planning target volume(PTV), and the availability of radiation therapy with lower doses in normal organs is expected.

  • PDF

Comparison Analysis of Patient Specific Quality Assurance Results using portal dose image prediction and Anisotropic analytical algorithm (Portal dose image prediction과 anisotropic analytical algorithm을 사용한 환자 특이적 정도관리 결과 비교 분석)

  • BEOMSEOK AHN;BOGYOUM KIM;JEHEE LEE
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.35
    • /
    • pp.15-21
    • /
    • 2023
  • Purpose: The purpose of this study is to compare the performance of the anisotropic analytical algorithm (AAA) and portal dose image prediction (PDIP) for patient-specific quality assurance based on electronic portal imaging device, and to evaluate the clinical feasibility of portal dosimetry using AAA. Subjects and methods: We retrospectively selected a total of 32 patients, including 15 lung cancer patients and 17 liver cancer patients. Verification plans were generated using PDIP and AAA. We obtained gamma passing rates by comparing the calculated distribution with the measured distribution and obtained MLC positional difference values. Results: The mean gamma passing rate for lung cancer patients was 99.5% ± 1.1% for 3%/3 mm using PDIP and 90.6% ± 5.8% for 1%/1 mm. Using AAA, the mean gamma passing rate was 98.9% ± 1.7% for 3%/3 mm and 87.8% ± 5.2% for 1%/1 mm. The mean gamma passing rate for liver cancer patients was 99.9% ± 0.3% for 3%/3 mm using PDIP and 96.6% ± 4.6% for 1%/1 mm. Using AAA, the mean gamma passing rate was 99.6% ± 0.5% for 3%/3 mm and 89.5% ± 6.4% for 1%/1 mm. The MLC positional difference was small at 0.013 mm ± 0.002 mm and showed no correlation with the gamma passing rate. Conclusion: The AAA algorithm can be clinically used as a portal dosimetry calculation algorithm for patientspecific quality assurance based on electronic portal imaging device.

  • PDF

Clinical Application of the Dual Energy Photon Beam Using 6 MV and 10 MV X-ray (6MV 및 10 MV X-ray의 이중에너지를 생성하는 방사선 발생장치의 임상적 이용)

  • Lee, Myung-Za;Han, Hye-Gyeong
    • Radiation Oncology Journal
    • /
    • v.6 no.1
    • /
    • pp.93-99
    • /
    • 1988
  • Some modern accerelators provide a dual energy for photon beam treatment. The main advantages of dual energy in the treatment of rectosigmoid or rectal cancer are as fellows. 1. Dose in the critical organ such as small intestine, bladder and genital organ are reduced. 2. Presacral and perineal area is fully covered. Dose distribution analysis such as calculation of dose in a target volume, isocenter, $D_{nax}$ and dose spectrum in any region of interest are possible. Examples of plan are given and results are discussed.

  • PDF

Comparison of the Efficacy of 2D Dosimetry Systems in the Pre-treatment Verification of IMRT (세기조절방사선치료의 환자별 정도관리를 위한 2차원적 선량계의 유용성 평가)

  • Hong, Chae-Seon;Lim, Jong-Soo;Ju, Sang-Gyu;Shin, Eun-Hyuk;Han, Young-Yih;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.27 no.2
    • /
    • pp.91-102
    • /
    • 2009
  • Purpose: To compare the accuracy and efficacy of EDR2 film, a 2D ionization chamber array (MatriXX) and an amorphous silicon electronic portal imaging device (EPID) in the pre-treatment QA of IMRT. Materials and Methods: Fluence patterns, shaped as a wedge with 10 steps (segments) by a multi-leaf collimator (MLC), of reference and test IMRT fields were measured using EDR2 film, the MatriXX, and EPID. Test fields were designed to simulate leaf positioning errors. The absolute dose at a point in each step of the reference fields was measured in a water phantom with an ionization chamber and was compared to the dose obtained with the use of EDR2 film, the MatriXX and EPID. For qualitative analysis, all measured fluence patterns of both reference and test fields were compared with calculated dose maps from a radiation treatment planning system (Pinnacle, Philips, USA) using profiles and $\gamma$ evaluation with 3%/3 mm and 2%/2 mm criteria. By measurement of the time to perform QA, we compared the workload of EDR2 film, the MatriXX and EPID. Results: The percent absolute dose difference between the measured and ionization chamber dose was within 1% for the EPID, 2% for the MatriXX and 3% for EDR2 film. The percentage of pixels with $\gamma$%>1 for the 3%/3 mm and 2%/2 mm criteria was within 2% for use of both EDR2 film and the EPID. However, differences for the use of the MatriXX were seen with a maximum difference as great as 5.94% with the 2%/2 mm criteria. For the test fields, EDR2 film and EPID could detect leaf-positioning errors on the order of -3 mm and -2 mm, respectively. However it was difficult to differentiate leaf-positioning errors with the MatriXX due to its poor resolution. The approximate time to perform QA was 110 minutes for the use of EDR2 film, 80 minutes for the use of the MatriXX and approximately 55 minutes for the use of the EPID. Conclusion: This study has evaluated the accuracy and efficacy of EDR2 film, the MatriXX and EPID in the pre-treatment verification of IMRT. EDR2 film and the EPID showed better performance for accuracy, while the use of the MatriXX significantly reduced measurement and analysis times. We propose practical and useful methods to establish an effective QA system in a clinical environment.

Development of Adjustable Head holder Couch in H&N Cancer Radiation Therapy (두경부암 방사선 치료 시 Set-Up 조정 Head Holder 장치의 개발)

  • Shim, JaeGoo;Song, KiWon;Kim, JinMan;Park, MyoungHwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.43-50
    • /
    • 2014
  • In case of all patients who receive radiation therapy, a treatment plan is established and all steps of treatment are planned in the same geometrical condition. In case of head and neck cancer patients who undergo simulated treatment through computed tomography (CT), patients are fixed onto a table for planning, but laid on the top of the treatment table in the radiation therapy room. This study excogitated and fabricated an adjustable holder for head and neck cancer patients to fix patient's position and geometrical discrepancies when performing radiation therapy on head and neck cancer patients, and compared the error before and after adjusting the position of patients due to difference in weight to evaluate the correlation between patients' weight and range of error. Computed tomography system(High Advantage, GE, USA) is used for phantom to maintain the supine position to acquire the images of the therapy site for IMRT. IMRT 4MV X-rays was used by applying the LINAC(21EX, Varian, U.S.A). Treatment planning system (Pinnacle, ver. 9.1h, Philips, Madison, USA) was used. The setup accuracy was compared with each measurement was repeated five times for each weight (0, 15, and 30Kg) and CBCT was performed 30 times to find the mean and standard deviation of errors before and after the adjustment of each weight. SPSS ver.19.0(SPSS Inc., Chicago, IL,USA) statistics program was used to perform the Wilcoxon Rank test for significance evaluation and the Spearman analysis was used as the tool to analyze the significance evaluation of the correlation of weight. As a result of measuring the error values from CBCT before and after adjusting the position due to the weight difference, X,Y,Z axis was $0.4{\pm}0.8mm$, $0.8{\pm}0.4mm$, 0 for 0Kg before the adjustment. In 15Kg CBCT before and after adjusting the position due to the weight difference, X,Y,Z axis was $0.2{\pm}0.8mm$, $1.2{\pm}0.4mm$, $2.0{\pm}0.4mm$. After adjusting position was X,Y,Z axis was $0.2{\pm}0.4mm$, $0.4{\pm}0.5mm$, $0.4{\pm}0.5mm$. In 30Kg CBCT before and after adjusting the position due to the weight difference, X,Y,Z axis was $0.8{\pm}0.4mm$, $2.4{\pm}0.5mm$, $4.4{\pm}0.8mm$. After adjusting position was X,Y,Z axis was $0.6{\pm}0.5mm$, $1.0{\pm}0mm$, $0.6{\pm}0.5mm$. When the holder for the head and neck cancer was used to adjust the ab.0ove error value, the error values from CBCT were $0.2{\pm}0.8mm$ for the X axis, $0.40{\pm}0.54mm$ for Y axis, and 0 for Z axis. As a result of statistically analyzing each value before and after the adjustment the value was significant with p<0.034 at the Z axis with 15Kg of weight and with p<0.038 and p<0.041 at the Y and Z axes respectively with 30Kg of weight. There was a significant difference with p<0.008 when the analysis was performed through Kruscal-Wallis in terms of the difference in the adjusted values of the three weight groups. As it could reduce the errors, patients' reproduction could be improved for more precise and accurate radiation therapy. Development of an adjustable device for head and neck cancer patients is significant because it improves the reproduction of existing equipment by reducing the errors in patients' position.

Evaluation of Ovary Dose for woman of Childbearing age Woman with Breast cancer in tomotherapy (가임기 여성의 유방암 토모치료 시 난소선량 평가비교)

  • Lee, Soo Hyeung;Park, Soo Yeun;Choi, Ji Min;Park, Ju Young;Kim, Jong Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.337-343
    • /
    • 2014
  • Purpose : The aim of this study is to evaluate unwanted scattered dose to ovary by scattering and leakage generated from treatment fields of Tomotherapy for childbearing woman with breast cancer. Materials and Methods : The radiation treatments plans for left breast cancer were established using Tomotherapy planning system (Tomotherapy, Inc, USA). They were generated by using helical and direct Tomotherapy methods for comparison. The CT images for the planning were scanned with 2.5 mm slice thickness using anthropomorphic phantom (Alderson-Rando phantom, The Phantom Laboratory, USA). The measurement points for the ovary dose were determined at the points laterally 30 cm apart from mid-point of treatment field of the pelvis. The measurements were repeated five times and averaged using glass dosimeters (1.5 mm diameter and 12 mm of length) equipped with low-energy correction filter. The measures dose values were also converted to Organ Equivalent Dose (OED) by the linear exponential dose-response model. Results : Scattered doses of ovary which were measured based on two methods of Tomo helical and Tomo direct showed average of $64.94{\pm}0.84mGy$ and $37.64{\pm}1.20mGy$ in left ovary part and average of $64.38{\pm}1.85mGy$ and $32.96{\pm}1.11mGy$ in right ovary part. This showed when executing Tomotherapy, measured scattered dose of Tomo Helical method which has relatively greater monitor units (MUs) and longer irradiation time are approximately 1.8 times higher than Tomo direct method. Conclusion : Scattered dose of left and right ovary of childbearing women is lower than ICRP recommended does which is not seriously worried level against the infertility and secondary cancer occurrence. However, as breast cancer occurrence ages become younger in the future and radiation therapy using high-precision image guidance equipment like Tomotherapy is developed, clinical follow-up studies about the ovary dose of childbearing women patients would be more required.

Verification of Radiation Therapy Planning Dose Based on Electron Density Correction of CT Number: XiO Experiments (컴퓨터영상의 전자밀도보정에 근거한 치료선량확인: XiO 실험)

  • Choi Tae-Jin;Kim Jin-Hee;Kim Ok-Bae
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • This study peformed to confirm the corrected dose In different electron density materials using the superposition/FFT convolution method in radiotherapy Planning system. The experiments of the $K_2HPO_4$ diluted solution for bone substitute, Cork for lung and n-Glucose for soft tissue are very close to effective atomic number of tissue materials. The image data acquisited from the 110 KVp and 130 KVp CT scanner (Siemes, Singo emotions). The electron density was derived from the CT number (H) and adapted to planning system (Xio, CMS) for heterogeneity correction. The heterogeneity tissue phantom used for measurement dose comparison to that of delivered computer planning system. In the results, this investigations showed the CT number is highly affected in photoelectric effect in high Z materials. The electron density in a given energy spectrum showed the relation of first order as a function of H in soft tissue and bone materials, respectively. In our experiments, the ratio of electron density as a function of H was obtained the 0.001026H+1.00 in soft tissue and 0.000304H+1.07 for bone at 130 KVp spectrum and showed 0.000274H+1.10 for bone tissue in low 110 KVp. This experiments of electron density calibrations from CT number used to decide depth and length of photon transportation. The Computed superposition and FFT convolution dose showed very close to measurements within 1.0% discrepancy in homogeneous phantom for 6 and 15 MV X rays, but it showed -5.0% large discrepancy in FFT convolution for bone tissue correction of 6 MV X rays. In this experiments, the evaluated doses showed acceptable discrepancy within -1.2% of average for lung and -2.9% for bone equivalent materials with superposition method in 6 MV X rays. However the FFT convolution method showed more a large discrepancy than superposition in the low electron density medium in 6 and 15 MV X rays. As the CT number depends on energy spectrum of X rays, it should be confirm gradient of function of CT number-electron density regularly.

  • PDF

Development of Computer-based 2-D Radiation Therapy Planning System (컴퓨터를 이용한 통합적 2차원 방사선치료계획장치 개발)

  • Suh, T.S.;Yoon, S.C.;Suh, D.Y.;Kim, M.C.;Lee, H.K.;Choe, B.Y.;Shinn, K.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.64-65
    • /
    • 1998
  • The aim of this work is to develop computerized 2-D radiation therapy planning system. The algorithms to compute dose for photon, electron, radioisotope have been developed, and dose distributions were superimposed on CT or MR images. Using object oriented modeling the structure of program has been designed for the efficient user-interface. Finally, a prototyp of 2-D radiation therapy planning system has been successfully applied in clinical cases for the demonstration.

  • PDF

Enhancement Alogorithm of Portal Image using Neuo-Fuzzy (뉴로 퍼지를 이용한 포탈 영상의 개선 알고리듬의 연구)

  • 허수진;신동익
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.527-535
    • /
    • 2000
  • For a reliable patient set-up verification, better portal films are needed to track relevant features. Simulator films are compared with portal films as a reference image in radiotherapy planning. This shows some possibilities of the use of image information of simulator images for enhancement and restorations of portal images which are very poor in quality compared with the simulator images. This paper present an approach that combine an associative memory, a kind of artificial neural networks with fuzzy image enhancement technique using genetic algorithm which determines the fuzzy region of membership function by the use of maximum entropy principles. A higher portal image quality than conventional technique is achieved.

  • PDF

Daylighting Design Factors for Korean Dementia Nursing Homes Based on the Therapeutic Effects of Light (빛에 의한 치료적 효과 기반의 한국형 치매요양시설의 자연채광 계획 요소에 관한 고찰)

  • Jee, Soo In
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.28 no.4
    • /
    • pp.71-87
    • /
    • 2022
  • Purpose: This study examines the daylighting design factors of Korean dementia nursing homes, in order to realize a therapeutic environment based on the therapeutic effect of light in the rapidly aging trend with an huge increase in the population of dementia in Korea. Methods: Through literature reviews, this study aims to theoretically examine the therapeutic light environment for the elderly with dementia, derive daylighting design factors of Korean dementia nursing homes, and analyze their detailed design factors. Results: The result of this study can be summarized into two points. The first one is that the daylighting design factors reflected in dementia nursing homes are derived into six factors: building layout, windows, glazing, shading devices, spaces, and interior finishings that determine the availability of daylight. The second one is that the detailed daylighting design factors are shown as primary and secondary detailed design factors, and the main values to be considered when applying these factors into dementia nursing homes are analyzed as maximizing daylight availability, optimization of the possibility of therapeutic view, and anti-glare. Implications: The daylighting design factors will contribute to maximizing the availability of daylight, optimizing the possibility of view, and minimizing the glare in the living spaces of dementia nursing homes in Korea.