• Title/Summary/Keyword: 층서구조

Search Result 155, Processing Time 0.026 seconds

Seismic attenuation from VSP data in methane hydrate-bearing sediments (메탄 하이드레이트 부존 퇴적층으로부터 획득한 수직탄성파 (VSP) 자료에서의 탄성파 진폭 감쇠)

  • Matsushima, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • Recent seismic surveys have shown that the presence of methane hydrate (MH) in sediments has significant influence on seismic attenuation. I have used vertical seismic profile (VSP) data from a Nankai Trough exploratory well, offshore Tokai in central Japan, to estimate compressional attenuation in MH-bearing sediments at seismic frequencies of 30-110 Hz. The use of two different measurement methods (spectral ratio and centroid frequency shift methods) provides an opportunity to validate the attenuation measurements. The sensitivity of attenuation analyses to different depth intervals, borehole irregularities, and different frequency ranges was also examined to validate the stability of attenuation estimation. I found no significant compressional attenuation in MH-bearing sediments at seismic frequencies. Macroscopically, the peaks of highest attenuation in the seismic frequency range correspond to low-saturation gas zones. In contrast, high compressional attenuation zones in the sonic frequency range (10-20 kHz) are associated with the presence of methane hydrates at the same well locations. Thus, this study demonstrated the frequency-dependence of attenuation in MH-bearing sediments; MH-bearing sediments cause attenuation in the sonic frequency range rather than the seismic frequency range As a possible reason why seismic frequencies in the 30-110 Hz range were not affected in MH-bearing sediments, I point out the effect of thin layering of MH-bearing zones.

Late Quaternary Sequence Stratigraphy in Kyeonggi Bay, Mid-eastern Yellow Sea (황해 중동부 경기만의 후기 제4기 순차층서 연구)

  • Kwon, Yi-Kyun
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.242-258
    • /
    • 2012
  • The Yellow Sea has sensitively responded to high-amplitude sea-level fluctuations during the late Quaternary. The repeated inundation and exposure have produced distinct transgression-regression successions with extensive exposure surfaces in Kyeonggi Bay. The late Quaternary strata consist of four seismic stratigraphic units, considered as depositional sequences (DS-1, DS-2, DS-3, and DS-4). DS-1 was interpreted as ridge-forming sediments of tidal-flat and estuarine channel-fill facies, formed during the Holocene highstand. DS-2 consists of shallow-marine facies in offshore area, which was formed during the regression of Marine Isotope Stage (MIS)-3 period. DS-3 comprises the lower transgressive facies and the upper highstand tidal-flat facies in proximal ridges and forced regression facies in distal ridges and offshore area. The lowermost DS-4 rests on acoustic basement rocks, considered as the shallow-marine and shelf deposits formed before the MIS-6 lowstand. This study suggests six depositional stages. During the first stage-A, MIS-6 lowstand, the Yellow Sea shelf was subaerially exposed with intensive fluvial incision and weathering. The subsequent rapid and high amplitude rise of sea level in stage-B until the MIS-5e highstand produced transgressive deposits in the lowermost part of the MIS-5 sequence, and the successive regression during the MIS-5d to -5a and the MIS-4 lowstand formed the upperpart of the MIS-5 sequence in stage-C. During the stage-D, from the MIS-4 lowstand to MIS-3c highstand period, the transgressive MIS-3 sequence formed in a subtidal environment characterized by repetitive fluvial incision and channel-fill deposition in exposed area. The subsequent sea-level fall culminating the last glacial maximum (Stage-E) made shallow-marine regressive deposits of MIS-3 sequence in offshore distal area, whereas it formed fluvial channel-fills and floodplain deposits in the proximal area. After the last glacial maximum, the overall Yellow Sea shelf was inundated by the Holocene transgression and highstand (Stage-F), forming the Holocene transgressive shelf sands and tidal ridges.

Palaeomgnetic Study on the Cretaceous Rocks in the Konchonri Area of the Northern Milyang Subbasin, Korea (밀양소분지 건천리 일원의 백악기 암석에 대한 고자기 연구)

  • Kang, Hee-Cheol;Kim, In-Soo;Yun, Sung-Hyo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • A palaeomagnetic study was carried out on Early through Late Cretaceous sandstones and volcanic sequences (the Songnaedong Formation, Chaeyaksan Volcanics, Konchonri Formation, and Jusasan Andesite it ascending order) from Konchonri area in the northern Milyang subbasin of the Kyongsang Basin, Korea. A high-temperature stable remanence with direction of $d=22.9^{\circ},\;i=59.1^{\circ}\;({\alpha}_{95}=3.0^{\circ})$ has been isolated and a corresponding pole was $71.6^{\circ}N,\;199.6^{\circ}E\;(A_{95}=4.2^{\circ})$. The characteristic high-temperature component resides in both hematite and magnetite. The primary nature of this remanence is confirmed from positive fold and reversals tests, The palaeopole is consistent with those of the Hayang Group in other parts of the Kyongsang Basin. A comparison of the palaeomagnetic pole position from the studied area with the contemporary pole from China west of the Tan-Lu fault presents that Konchonri area has experienced little latitudinal displacement nor vertical-axis block rotation relative to the Chinese blocks since the Cretaceous. Based on the formations indicating dual polarity, radiometric and paleontologic data, the magnetostratigraphic age of the studied sequence from the Songnedong Formation to the Jusasan Andesite ranges from upper Albian to lower Campanian reverse polarity chronozone. On the other hand, volcanic samples of the Chaeyaksan Volcanics and the Jusasan Andesite showed the scattered directions considered in group, even though individual sample showed a stable remanent magnetization in response to thermal demagnetization. It indicates that they have been reworked after acquisition of the stable remanent magnetization.

  • PDF

Sedimentary Environments of Pre-Holocene Kanweoldo Deposit in Cheonsu Bay, Western Coast of Korea (한국 서해 천수만 선현세 간월도 퇴적층의 퇴적환경)

  • Jung, Hoi-Soo;Um, In-Kwon;Lim, Dong-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.1
    • /
    • pp.32-42
    • /
    • 2002
  • The late Quaternary deposit of Cheonsu Bay, up to 20 m in thickness above the Jurassic granite basement, consists of two sedimentary units: an upper Holocene mud and sandy mud deposit (Unit M1), and a lower late Pleistocene sand and mud deposit (Unit M2; 'Kanweoldo Deposit&apos). Unit M1 is a typical Holocene tidal-flat deposit of Cheonsu Bay, showing a coarsening upward, retrogradational facies trend. This retrograding facies trend is probably due to a relative low sedimentation rate during Holocene transgression. Overlain unconformably by Unit M1, Unit M2 deposit reaches up to 14 m in thickness and is mainly composed of muddy sediment with yellow to gray color. This unit is characterized by a variety of tide-influenced signatures such as rhythmic bedding, flaser bedding, crab burrow fossil, marine dinoflagellate assemblage and authigenic glauconite mineral, indicating very similar depositional environment to those of Unit M1 deposit. It suggests that Unit M2 was probably accumulated under the tidal-flat environment during a pre-Holocene sea-level highstand. In particular, the uppermost 3-4 m of Unit M2 appears to have undergone subaerial exposure and subsequent weathering during the sea-level lowstand after deposition. Therefore, stratigraphic unconformity between Holocene and late Pleistocene sediments is highlighted by the desiccated and weathered surface of Unit M2.

Evolution of Neogene Sedimentary Basins in the Eastern Continental Margin of Korea (한반도 동해 대륙주변부 신제삼기 퇴적분지의 진화)

  • Yoon Suk Hoon;Chough Sung Kwun
    • The Korean Journal of Petroleum Geology
    • /
    • v.1 no.1 s.1
    • /
    • pp.15-27
    • /
    • 1993
  • Seismic reflection profiles from the eastern continental margin of Korea delineate three major Neogene sedimentary basins perched on the shelf and slope regions: Pohang-Youngduk, Mukho and Hupo basins. The stratigraphic and structural analyses demonstrate that the formation and filling of these basins were intimately controlled by two phases of regional tectonism: transtensional and subsequent contractional deformations. In the Oligocene to Early Miocene, back-arc opening of the East Sea induced extensional shear deformation with dextral strike-slip movement along right-stepping Hupo and Yangsan faults. During the transtensional deformation, the Pohang-Youngduk Basin was formed by pull-apart opening between two strike-slip faults; in the northern part, block faulting caused to form the Mukho Basin between basement highs. As a result of the back-arc closure, the stress field was inverted into compression at the end of the Middle Miocene. Under the compressive regime, two episodes (Late Miocene and Early Pliocene) of regional deformation led to the destruction and partial uplift of the basin-filling sequences. In particular, during the second episode of compressive deformation, the Hupo fault was reactivated with an oblique-slip sense, which resulted in an opening of the Hupo Basin as a half-graben on the downthrown fault block.

  • PDF

An Application of loop-loop EM Method for Geotechnical Survey (지반조사를 위한 loop-loop 전자탐사 기법의 적용)

  • You Jin-Sang;Song Yoonho;Seo1 Soon-Jee;Song Young-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.2
    • /
    • pp.25-33
    • /
    • 2001
  • Loop-loop electromagnetic (EM) survey in frequency domain has been carried out in order to provide basic solution to geotechnical applications. Source and receiver configuration may be horizontal co-planar (HCP) and/or vertical co-planar (VCP). Three quadrature components of mutual impedance ratio for each configuration are used to construct the subsurface image. For the purpose of obtaining the model response and validating the reasonable performance of the inversion, we obtained each responses of two-layered and three-layered earth models and two-dimensional (2-D) isolated anomalous body. The response of 2-D isolated anomalous body has been calculated using extended Born approximation for the solution of 2.5-D integral equation describing EM scattering problem. As a result of the least-squares inversion with variable Lagrangian multiplier, we could construct more resolvable image from HCP data than VCP data. Furthermore, joint inversion of HCP and VCP data made better stability and resolution of the inversion. Resistivity values, however, did not exactly match the true ones. Loop-loop EM field data was obtained with EM34-3XL system manufactured by Geonics Ltd. (Canada). Electrical resistivity survey was conducted on the same line for the comparison in advance. Since the constructed image from loop-loop EM data by 2-D inversion algorithm showed almost similar resistivity distribution to that from electrical resistivity one, we expect the developed 2.5-D loop-loop EM inversion program can be applied for the reconnaissance site survey.

  • PDF

Measurement of GPR Direct Wave Velocity by f-k Analysis and Determination of Dielectric Property by Dispersive Guided Wave (f-k 분석에 의한 레이다파 속도 측정 및 레이다파의 분산성 가이드 현상을 이용한 지하 물성 계산)

  • Yi, Myeong-Jong;Endres, Anthony L.;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.304-315
    • /
    • 2006
  • We have examined the applicability of f-k analysis to the GPR direct wave measurement for water content to characterize vadose zone condition. When the vadose zone consists of a dry surface layer over wet substratum, we obtained f-k spectra where most of the energy is bounded by the air and dry soil velocities. In this case, dry soil velocity was successfully estimated by using high frequency data. On the other hands, when wet soil overlies dry substratum, the f-k spectra show a contrasting response where most of the energy travels with the velocity bounded by dry and wet soil velocities. In this case, the radar waves are trapped and guided within wet soil layer, exhibiting velocity dispersion. By adopting modal propagation theory, we could formulae a simple inversion code to find two layer's dielectric constants as well as layer thickness. By inverting the velocity dispersion curve obtained from f-k spectra of synthetic modeling data, we could obtain good estimates of dielectric constants of each layer as well as first layer thickness. Moreover, we could obtain more accurate results by including the higher mode data. We expect this method will be useful to get the quantitative property of real subsurface when the field condition is similar.

Primary Solution Evaluations for Interpreting Electromagnetic Data (전자탐사 자료 해석을 위한 1차장 계산)

  • Kim, Hee-Joon;Choi, Ji-Hyang;Han, Nu-Ree;Song, Yoon-Ho;Lee, Ki-Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.361-366
    • /
    • 2009
  • Layered-earth Green's functions in electormagnetic (EM) surveys play a key role in modeling the response of exploration targets. They are computed through the Hankel transforms of analytic kernels. Computational precision depends upon the choice of algebraically equivalent forms by which these kemels are expressed. Since three-dimensional (3D) modeling can require a huge number of Green's function evaluations, total computational time can be influenced by computational time for the Hankel transform evaluations. Linear digital filters have proven to be a fast and accurate method of computing these Hankel transforms. In EM modeling for 3D inversion, electric fields are generally evaluated by the secondary field formulation to avoid the singularity problem. In this study, three components of electric fields for five different sources on the surface of homogeneous half-space were derived as primary field solutions. Moreover, reflection coefficients in TE and TM modes were produced to calculate EM responses accurately for a two-layered model having a sea layer. Accurate primary fields should substantially improve accuracy and decrease computation times for Green's function-based problems like MT problems and marine EM surveys.

Tectonic Structures and Hydrocarbon Potential in the Central Bransfield Basin, Antarctica (남극 브랜스필드 해협 중앙분지의 지체구조 및 석유부존 가능성)

  • Huh Sik;Kim Yeadong;Cheong Dae-Kyo;Jin Young Keun;Nam Sang Heon
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.9-15
    • /
    • 1997
  • The study area is located in the Central Bransfield Basin, Antarctica. To analyze the morphology of seafloor, structure of basement, and seismic stratigraphy of the sedimentary layers, we have acquired, processed, and interpreted the multi-channel seismic data. The northwest-southeastern back-arc extension dramatically changes seafloor morphology, volcanic and fault distribution, and basin structure along the spreading ridges. The northern continental shelf shows a narrow, steep topography. In contrast, the continental shelf or slope in the south, which is connected to the Antarctic Peninsula, has a gentle gradient. Volcanic activities resulted in the formation of large volcanos and basement highs near the spreading center, and small-scale volcanic diapirs on the shelf. A very long, continuous normal fault characterizes the northern shelf, whereas several basinward synthetic faults probably detach into the master fault in the south. Four transfer faults, the northwest-southeastern deep-parallel structures, controlled the complex distributions of the volcanos, normal faults, depocenters, and possibly hydrocarbon provinces in the study area. They have also deformed the basement structure and depositional pattern. Even though the Bransfield Basin was believed to be formed in the Late Cenozoic (about 4 Ma), the hydrocarbon potential may be very high due to thick sediment accumulation, high organic contents, high heat flow resulted from the active tectonics, and adequate traps.

  • PDF

A Study on Field Seismic Data Processing using Migration Velocity Analysis (MVA) for Depth-domain Velocity Model Building (심도영역 속도모델 구축을 위한 구조보정 속도분석(MVA) 기술의 탄성파 현장자료 적용성 연구)

  • Son, Woohyun;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.225-238
    • /
    • 2019
  • Migration velocity analysis (MVA) for creating optimum depth-domain velocities in seismic imaging was applied to marine long-offset multi-channel data, and the effectiveness of the MVA approach was demonstrated by the combinations of conventional data processing procedures. The time-domain images generated by conventional time-processing scheme has been considered to be sufficient so far for the seismic stratigraphic interpretation. However, when the purpose of the seismic imaging moves to the hydrocarbon exploration, especially in the geologic modeling of the oil and gas play or lead area, drilling prognosis, in-place hydrocarbon volume estimation, the seismic images should be converted into depth domain or depth processing should be applied in the processing phase. CMP-based velocity analysis, which is mainly based on several approximations in the data domain, inherently contains errors and thus has high uncertainties. On the other hand, the MVA provides efficient and somewhat real-scale (in depth) images even if there are no logging data available. In this study, marine long-offset multi-channel seismic data were optimally processed in time domain to establish the most qualified dataset for the usage of the iterative MVA. Then, the depth-domain velocity profile was updated several times and the final velocity-in-depth was used for generating depth images (CRP gather and stack) and compared with the images obtained from the velocity-in-time. From the results, we were able to confirm the depth-domain results are more reasonable than the time-domain results. The spurious local minima, which can be occurred during the implementation of full waveform inversion, can be reduced when the result of MVA is used as an initial velocity model.