Nearly NS-trending Fe-Ti ore bodies intermittently occur in the Hadong anorthosites, south Korea, irrespective of the rock types of the anorthosites. In order to determine their occurrence mode and deformation history, we collected the features of occurrence and geological structures in the field, petrographic features using thin sections of the principal constituent rocks, and geochemical data of ilmenites in the ore body using electron probe microanalysis. Fe-Ti ore bodies examined in this study are divided into two types: dike- and lamina-types. It is steadily supported that the dike-type has intruded into the anorthositic rocks after their emplacement and solidification. And the laminar-type is probably a result of the mylonitization and transposition of the dike-type ore bodies parallel to the shear planes, due to later strong dextral ductile shearing. In the meantime, the Fe-Ti ore bodies have experienced the stronger dextral shearing in the more northern part of the study area, i.e. Cheongryong-ri, Wolhoeng-ri, Jonghwa-ri, and Jayangri and Baekun-ri in ascending order of its strength, together with the less content of $TiO_2$. All ilmenites of the ore bodies have very similar chemical composition, as pure ilmenite of 52~55 wt.% in $TiO_2$ content, irrespective of the occurrence mode and degree of later ductile shearing of the ore bodies. And they didn't experience to exsolve into magnetite. The structural data indicate that the Hadong anorthosites have deformed by NNE-trending folding, intrusion of the Fe-Ti ore bodies, NNW~NNE-trending dextral ductile shearing, NW~NNW-trending sinistral semi-brittle shearing, and intrusion of NNE~NE-trending mafic dykes in descending order of chronology after the formation of foliation of the anorthositic rocks. The foliation is interpreted as a result of the accumulation of crystals that settle out from the magma by the action of gravity.
The Zhenzigou Pb-Zn deposit, one of the largest Pb-Zn deposit in the northeast of China, is located at the Qingchengzi mineral field in Jiao Liao Ji belt. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and monzoritic granite. The Zhenzigou deposit which is a strata bound SEDEX or SEDEX type deposit occurs as layer ore and vein ore in Langzishan formation and Dashiqiao formation of the Paleoproterozoic Liaohe group. Based on mineral petrography and paragenesis, dolomites from this deposit are classified three type (1. dolomite (D0) as hostrock, 2. dolomite (D1) in layer ore associated with white mica, quartz, K-feldspar, sphalerite, galena, pyrite, arsenopyrite from greenschist facies, 3. dolomite (D2) in vein ore associated with quartz, apatite and pyrite from quartz vein). The structural formulars of dolomites are determined to be Ca1.00-1.03Mg0.94-0.98Fe0.00-0.06As0.00-0.01(CO3)2(D0), Ca0.97-1.16Mg0.32-0.83Fe0.10-0.50Mn0.01-0.12Zn0.00-0.01Pb0.00-0.03As0.00-0.01(CO3)2(D1), Ca1.00-1.01Mg0.85-0.92Fe0.06-0.11 Mn0.01-0.03As0.01(CO3)2(D2), respectively. It means that dolomites from the Zhenzigou deposit have higher content of trace elements compared to the theoretical composition of dolomite. Feo and MnO contents of these dolomites (D0, D1 and D2) contain 0.05-2.06 wt.%, 0.00-0.08 wt.% (D0), 3.53-17.22 wt.%, 0.49-3.71 wt.% (D1) and 2.32-3.91 wt.%, 0.43-0.95 wt.% (D2), respectively. The dolomite (D1) from layer ore has higher content of these trace elements (FeO, MnO, ZnO and PbO) than dolomite (D0) from hostrock and dolomite (D2) from quartz vein. Dolomites correspond to Ferroan dolomite (D0 and D2), and ankerite and Ferroan dolomite (D1), respectively. Therefore, 1) dolomite (D0) from hostrock is a Ferroan dolomite formed by marine evaporative lagoon environment in Paleoproterozoic Jiao Liao Ji basin. 2) Dolomite (D1) from layer ore is a ankerite and Ferroan dolomite formed by hydrothermal metasomatism origined metamorphism (greenschist facies) associated with Paleoproterozoic intrusion. 3) Dolomte (D2) from quartz vein is a Ferroan dolomite formed by hydrothermal fluid origined Mesozoic intrusion.
Koh, Sang-Mo;Lee, Bum Han;Lee, Gilljae;Cicek, Murat
Economic and Environmental Geology
/
v.47
no.5
/
pp.541-549
/
2014
The annual borate production in Turkey is about 3 million tons, which occupies approximately 61 percent of total annual world production. Turkey has five boron deposits including Bigadic, Emet, Kestelek, Kirka, and Sultancayir. At present, Bigadic, Emet, and Kirka deposits are operating. Kirka boron deposit is distributed within volcanoclatic sedimentary group as mainly layered, rarely brecciated and massive types. Major borate is borax associated with colemanite and ulexite. They show a horizontal symmetrical zonation from Na borate (borax) in the center of deposit to Na-Ca borate (ulexite) and Ca-borate (colemanite) in margin. Bigadic boron deposit is known as the largest colemanite deposit in the world. This deposit occurs as two borate bearing horizons in Miocene volcanoclastic sedimentary group. Thickness ranges from several meters to 100 meter with a length of several hundreds meters. Borate ore bodies which are mainly composed of colemanite and ulexite are alternated with claystone, mudstone, tuff and layered limestone as lenticular shape. Sultancayir boron deposit is mainly distributed within gray limestone. Main borate minerals of this deposit are pandermite and ulexite. Pandermite and ulexite occur as colloform aggregate and small veinlet, respectively. Turkish boron deposits are evaporite deposit which were formed in Miocene playa-lake environment. Boron was supplied to the deposits by the volcanic and hydrothermal activities.
Amphibolite-hosted Fe-Ti mineralization at the Soyeonpyeong Island, located in central western part of the Korean Peninsula is a typical orthomagmatic Fe-Ti oxide deposit in South Korea. The amphibolite intruded into NW-SE trending Precambrian metasedimentary rocks. Lower amphibolite is characterized by igneous layering, consisting of feldspar-dominant and amphibole-Fe-Ti oxide-dominant layers. The igneous layering shows complicated and/or sharp contact. In contrast, upper amphibolite has a more complicated lithofacies (garnet-bearing, coarser, and schistose), and massive Fe-Ti oxide ore alternates with schistose amphibolite. NS- and EW-trending fault systems lead to redistribute upper amphibolite-hosted Fe-Ti orebody and igneous layering of lower amphibolite, respectively. The whole-rock compositions of amphibolite and Fe-Ti oxide ore reflect their constituent minerals. Amphibolite shows significantly positive Eu anomalies whereas Fe-Ti oxide ore has weak negative Eu anomalies. Plagioclase (Andesine to oligoclase) and Fe-Ti oxide minerals have constant composition regardless of their distribution. Amphibole has a compositionally variable but it doesn't reflect the chemical evolution. Mineral compositions within individual layers and successive layers are relatively constant not showing any stratigraphic evolution. This suggests that there are no successive injections of Fe-rich magma or assimilation with Fe-rich country rocks. Contrasting Eu anomalies between amphibolite and Fe-Ti oxide ore also suggest that extensive plagioclase fractionation during early crystallization stage cause increase in $Fe_2O_3/FeO$ ratio and overall Fe contents in the residual magma. Thus, Fe-rich residual liquids may migrate at the upper amphibolite by filter pressing mechanism and then produce sheeted massive Fe-Ti mineralization during late fractional crystallization.
The Zhenzigou Pb-Zn deposit, which is one of the largest Pb-Zn deposit in the northeast of China, is located at the Qingchengzi mineral field in Jiao Liao Ji belt. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Zhenzigou deposit which is a strata bound SEDEX or SEDEX type deposit occurs as layer ore and vein ore in Langzishan formation and Dashiqiao formation of the Paleoproterozoic Liaohe group. White mica from this deposit are occured only in layer ore and are classified four type (Type I : weak alteration (clastic dolomitic marble), Type II : strong alteration (dolomitic clastic rock), Type III : layer ore (dolomitic clastic rock), Type IV : layer ore (clastic dolomitic marble)). Type I white mica in weak alteration zone is associated with dolomite that is formed by dolomitization of hydrothermal metasomatism. Type II white mica in strong alteration zone is associated with dolomite, ankerite, quartz and alteration of K-feldspar by hydrothermal metasomatism. Type III white mica in layer ore is associated with dolomite, ankerite, calcite, quartz and alteration of K-feldspar by hydrothermal metasomatism. And type IV white mica in layer ore is associated with dolomite, quartz and alteration of K-feldspar by hydrothermal metasomatism. The structural formulars of white micas are determined to be (K0.92-0.80Na0.01-0.00Ca0.02-0.01Ba0.00Sr0.01-0.00)0.95-0.83(Al1.72-1.57Mg0.33-0.20Fe0.01-0.00Mn0.00Ti0.02-0.00Cr0.01-0.00V0.00Sb0.02-0.00Ni0.00Co0.02-0.00)1.99-1.90(Si3.40-3.29Al0.71-0.60)4.00O10(OH2.00-1.83F0.17-0.00)2.00, (K1.03-0.84Na0.03-0.00Ca0.08-0.00Ba0.00Sr0.01-0.00)1.08-0.85(Al1.85-1.65Mg0.20-0.06Fe0.10-0.03Mn0.00Ti0.05-0.00Cr0.03-0.00V0.01-0.00Sb0.02-0.00Ni0.00Co0.03-0.00)1.99-1.93(Si3.28-2.99Al1.01-0.72)4.00O10(OH1.96-1.90F0.10-0.04)2.00, (K1.06-0.90Na0.01-0.00Ca0.01-0.00Ba0.00Sr0.02-0.01)1.10-0.93(Al1.93-1.64Mg0.19-0.00Fe0.12-0.01Mn0.00Ti0.01-0.00Cr0.01-0.00V0.00Sb0.00Ni0.00Co0.05-0.01)2.01-1.94(Si3.32-2.96Al1.04-0.68)4.00O10(OH2.00-1.91F0.09-0.00)2.00 and (K0.91-0.83Na0.02-0.01Ca0.02-0.00Ba0.01-0.00Sr0.00)0.93-0.83(Al1.84-1.67Mg0.15-0.08Fe0.07-0.02Mn0.00Ti0.04-0.00Cr0.06-0.00V0.02-0.00Sb0.02-0.01Ni0.00Co0.00)2.00-1.92(Si3.27-3.16Al0.84-0.73)4.00O10(OH1.97-1.88F0.12-0.03)2.00, respectively. It indicated that white mica of from the Zhenzigou deposit has less K, Na and Ca, and more Si than theoretical dioctahedral mica. Compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution. It means that the Fe in white mica exists as Fe2+ and Fe3+, but mainly as Fe2+. Therefore, white mica from layer ore of the Zhenzigou deposit was formed in the process of remelting and re-precipitation of pre-existed minerals by hydrothermal metasomatism origined metamorphism (greenschist facies) associated with Paleoproterozoic intrusion. And compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution during hydrothermal metasomatism depending on wallrock type, alteration degree and ore/gangue mineral occurrence frequency.
Sulfur isotope compositions (${\delta}^{34}S$) of seventy one sulfide minerals from the Shinyemi ore deposits were determined to range from -10.1 to +5.0‰ with a mean value of +2.1‰. These values are roughly comparable to those of various hydrothermal ore deposits in Korea, about +2.0 to +7.0‰ in ${\delta}^{34}S$, suggesting that they are to be same in source of sulfur. The Shinyemi deposits are grouped into two types; the western bedded skarn orebodies and the eastern small pipes and veins. The ${\delta}^{34}S$ values of sulfide minerals from the bedded orebodies (early mineralization) are ranging from -10.1 to +2.5‰, which is relatively wide in range, whereas those of the pipes and veins. (later mineralization) have a narrow range of ${\delta}^{34}S$ values, +2.7 to +5.0‰, regardless of the kind of sulfide minerals. Isotopic temperature obtained from the sphalerite-galena mineral pairs of the New B orebody appeared to be about 400 to $540^{\circ}C$ are reasonably good agreement with the comparable data of skarn mineral assemblages. It is concluded that the west orebodies were formed in earlier stage at higher temperatures than the east orebodies formed later at lower temperatures. Judging from the various data from the present study, the Shinyemi deposits can be defined as a typical contact metasomatic deposit. The source of sulfur in the hydrothermal solutions is considered to be comagmatic with the Shinyemi granodiorite.
The Gagok stratabound skarn deposit is the result of the intrusion of the Cretaceous granitic pluton into the Paleozoic calcareous rocks. The subvolcanic intrusion ranges in composition from quartz monzonite to granite porphyry with I-type, calc-alkaline and weakly peraluminous characteristics. Both endoskarn and exoskarn are developed at the Gagok Zn-(Pb) deposit, with more exoskarn than endoskarn. Geochemical and mineralogical characteristics in the Seongok and Wolgok orebodies can be treated in terms of self-organization. Sphalerites in the Gagok ore can also incorporate minor amounts of Mn, Cd, Cu and In. Trace element concentrations in different orebodies vary because fractionation of a given element into sphalerite is influenced by formation temperature and the amount of sphalerite in the ore. A group of high In/Zn and Cd/Zn ratios in ores, and low Mn/Fe ratios in sphalerites are correlated with proximal processes of a magmatic source. The pattern of minor/trace element variations in ores and sphalcrites can be used for petrogenetic interprctation, e.g., orebody zonation related to crystallization temperature and fluid d sources.
Kim Geon-Young;Kim Soo Jin;Koh Yong Kwon;Bae Dae Seok
Journal of the Mineralogical Society of Korea
/
v.17
no.3
/
pp.221-233
/
2004
Mineralogical characteristics and genesis of phlogopite in the talc deposits of the chungnam area were studied. Mica is one of the major impurity of talc ores in the study area. Talc-related micas show typical phlogopite composition, whereas talc-unrelated micas show wide compositional variations between biotite and phlogopite. Phlogopite mainly occurs in the black-wall type zone, especially in the nodular talc ores near the outer part of talc ore bodies. Interleaving textures of phlogopite and chlorite are easily observed under the optical microscope and back-scattered electron images. Interleaving textures of phlogopite and talc are observed also. Examination of the phlogopite by transmission electron microscope reveals that 14 $\AA$ layers of chlorite are randomly interlayered within the 10 $\AA$ layers of phlogopite, which suggests that the genesis of phlogopite is closely related to chlorite. Considering the occurrence and mineralogical characteristics of phlogopite, and the possible origin of K for the formation of phlogopite, phlogopite of the study area was formed by interaction between talc ore body and hydrothermal solution containing sufficient K at the late stage of talc formation. K might be introduced from the granitic gneiss at the contact zone between the talc ore body and the granitic gneiss under favorable structural condition for the potash metasomatism.
The geology of the Iskaycruz project are mainly composed of sedimentary rocks within Cretaceous basin. The basal part is composed up of dark-gray shale, gray sandstone, and clastic rock of Oyon formation interbedded with coal measures. In the folded zone in the eastern part of the survey area, there is Chimu formation that has medium-grained massive and white quarztite. In terms of geological structure, the Iskaykruz region is located in the folded and overthrust zones of the central part of the Occidental Mountains. Ore body was formed by hydrothermal replacement process and consists of zinc, lead, silver, and copper. Stratabound-type deposits are hosted in limestone of Santa formation. It extends 12 kilometers discontinuously from northern Canaypata to southern Antapampa. Irregular iron oxide and sulfide minerals hosted in Santa and Parihuanca formations are observed. The mineralization observed on the surface consist of primary sulfides consisting of sphalerite with galena and chalcopyrite, and iron and manganese oxide produced from oxidation of primary sulfides. Skarn minerals are accompanied by tremolite, garnet, epidote and quartz.
It consists of the Precambrian Jirisan metamorphic complex and Sancheong anorthosite complex and the Mesozoic granitoids which intrude them in the Sancheong area, the Jirisan province of Yeongnam massif, Korea. The study area is located in the western part of the stock-type Sancheong anorthosite complex. We performed a detailed fieldwork on the Sancheong anorthosite (SA) and Fe-Ti ore body (FTO) which constitute the Sancheong anorthosite complex, and reinterpreted the origin of FTO foliation and the genetic relationship between them from the foliations, shear zones, occurrences of the SA and FTO. The new structural characteristics between them are as follows: the multilayer structures of FTO, the derived veins of straight, anastomosing uneven types and block structures related to the size reduction of SA, the gradual or irregular boundaries of SA blocks and FTO showing bulbous lobate margins and comb structures, the FTO foliation and linear arrangements of flow occurrence which is not ductile shear deformation, the discontinuous shear zone of SA, the orientation of FTO foliations parallel to the boundaries of SA blocks, the predominance of FTO foliations toward the boundaries of SA blocks and being proportional to the aspect ratio of plagioclase xenocrysts and SA xenoblocks, and the flow folding structures of FTO foliation. Such field evidences indicate that the SA is not fully congealed when the FTO is melt and the fracturing of partly congealed SA causes the derived veins of FTO and the size reduction of SA. Also the gradual or irregular boundaries of SA blocks and FTO result from the mutual reaction between the not fully congealed SA blocks and the FTO melt, and the FTO foliation is a magmatic foliation which was formed by the interaction between the FTO melt and the partly congealed SA blocks. Therefore, these suggest that the SA and FTO are not formed from the intrusion of different magmas in genesis and age but from a coeval and cogenetic magma through multiple fractionation. We predict that the FTO will show an very irregular occurrence injected along irregular fractures, not the regular occurrence like as the intrusive vein and dike. It can be applied to the designing of Fe-Ti mineral resource exploration in this area.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.