• Title/Summary/Keyword: 측정위치

Search Result 6,820, Processing Time 0.032 seconds

Antioxidant Effects of Cysteine-containing Peptides of Different Lengths in Human HaCaT Keratinocytes Exposed to Hydrogen Peroxide (과산화수소에 노출된 인간 각질형성세포에서 길이가 다른 시스테인 함유 펩타이드의 항산화 효과)

  • Jae Won Ha;Joon Yong Choi;Yong Chool Boo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.3
    • /
    • pp.193-201
    • /
    • 2023
  • Hydrogen peroxide (H2O2) is a type of active oxygen species (ROS) that causes oxidative stress in cells and affects cell growth, proliferation, senescence, and death. The purpose of this study is to find active peptides that attenuate cytotoxicity of H2O2. A positional scanning synthetic tetrapeptide combinatorial library was screened to predict the sequence of potentially active peptides. As a result of comparing the effect of peptide pools on H2O2-induced death of human keratinocytes (HaCaT cells), various active peptide sequences were predicted. Especially, peptides containing cysteine (C) residue were predicted to be active. In follow-up experiments, the cytotoxicity and activity of cysteine-containing peptides of different lengths, such as C-NH2, CC-NH2, CCC-NH2, and CCCC-NH2 were examined. C-NH2 and CC-NH2 showed no significant cytotoxicity up to 1.0 mM, but CCC-NH2, and CCCC-NH2 showed relatively strong cytotoxicity. C-NH2 and CC-NH2 alleviated H2O2-induced cytotoxicity. CC-NH2 was more cytoprotective compared to C-NH2, C, N-acetyl cysteine (NAC), and glutathione (GSH). When intracellular ROS was measured by flow cytometry, H2O2 increased ROS production, and CC-NH2 suppressed ROS production more effectively than C-NH2, and it was as effective as C, NAC, and GSH. This study suggests that CC-NH2 of the cysteine-containing peptides of different lengths has an antioxidant property that safely and effectively alleviates H2O2-induced cytotoxicity and ROS production.

Feasibility Assessment on the Application of X-ray Computed Tomography on the Characterization of Bentonite under Hydration (벤토나이트 수화반응 특성화를 위한 X선 단층촬영 기술 적용성 평가)

  • Melvin B., Diaz;Gyung Won, Lee;Seohyeon, Yun;Kwang Yeom, Kim;Chang-soo, Lee;Minseop, Kim;Jin-Seop, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.491-501
    • /
    • 2022
  • Bentonite has been proposed as a buffer and backfill material for high-level radioactive waste repository. Under such repository environment conditions, bentonite is subjected to combined thermal, hydrological, mechanical, and chemical processes. This study evaluates the feasibility of applying X-ray CT technology on the characterization of bentonite under hydration conditions using a newly developed testing cell. The cylindrical cell is made of platic material, with a removable cap to place the sample, enabling to apply vertical pressure on the sample and to measure swelling pressure. The hydration test was carried out with a sample made of Gyeonju bentonite, with a dry density of 1.4 g/cm3, and a water content of 20%. The sample had a diameter of 27.5 mm and a height of 34 mm. During the test, water was injected at a constant pressure of 0.207 MPa, and lasted for 7 days. After one day of hydration, bentonite swelled and filled out the space inside the cell. Moreover, CT histograms showed how the hydration process induced an initial increase and later progressive decrease on the density of the sample. Detailed profiles of the mean CT value, CT standard deviation, and CT gradient provided more details on the hydration process of the sample and showed how the bottom and top regions exhibited a decrease on density while the middle region showed an increase, especially during the first two days of hydration. Later, the differences in CT values with respect to the initial state decreased, and were small at the end of testing. The formation and later reduction of cracks was also characterized through CT scanning.

Marginal bone loss between internal- and external- abutment connection type implants placed in the first molar area (제1대구치 위치에 식립된 단일 임플란트의 지대주 연결 유형에 따른 임플란트 주위골 흡수)

  • Seok-Hyun Lee;Eun-Woo Lee;Ha-Na Jung;Ok-Su Kim
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.1
    • /
    • pp.32-44
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate the effect of implant connection type on marginal bone loss (MBL) and to analyze the factors that affect MBL. This study focuses on single implants planted in the upper and lower first molar area. Materials and Methods: A total of 87 implants from 68 patients were tracked for a period over 5 years. There were 57 external connection type (EC) implants and 30 internal connection type (IC) implants in 38 males and 30 females. The MBL and EA were measured from intraoral radiograph images taken after 5 years at most. Results: Significant difference in MBL between EC and IC type was observed in patients without GBR or diabetes. Patients without GBR exhibited an MBL of -0.065 ± 0.859 mm in EC type and -0.627 ± 0.639 mm in IC type (P = 0.025). Using multiple regression analysis, a statistically significant negative correlation was observed between MBL and conditions including implant-abutment connection type (β = -0.303), diabetes (β = -0.113), emergence angle > 30° (β = -0.234), and age (β = -0.776). Conclusion: Within this results, IC type implants had less MBL than EC type, and implant prosthesis with emergence angle over 30° showed greater MBL. To minimize the MBL of the implant and ensure implant stability, careful consideration should be given to the EA of implant prosthesis and its connection type.

K-DEV: A Borehole Deviation Logging Probe Applicable to Steel-cased Holes (철재 케이싱이 설치된 시추공에서도 적용가능한 공곡검층기 K-DEV)

  • Yoonho, Song;Yeonguk, Jo;Seungdo, Kim;Tae Jong, Lee;Myungsun, Kim;In-Hwa, Park;Heuisoon, Lee
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.167-176
    • /
    • 2022
  • We designed a borehole deviation survey tool applicable for steel-cased holes, K-DEV, and developed a prototype for a depth of 500 m aiming to development of own equipment required to secure deep subsurface characterization technologies. K-DEV is equipped with sensors that provide digital output with verified high performance; moreover, it is also compatible with logging winch systems used in Korea. The K-DEV prototype has a nonmagnetic stainless steel housing with an outer diameter of 48.3 mm, which has been tested in the laboratory for water resistance up to 20 MPa and for durability by running into a 1-km deep borehole. We confirmed the operational stability and data repeatability of the prototype by constantly logging up and down to the depth of 600 m. A high-precision micro-electro-mechanical system (MEMS) gyroscope was used for the K-DEV prototype as the gyro sensor, which is crucial for azimuth determination in cased holes. Additionally, we devised an accurate trajectory survey algorithm by employing Unscented Kalman filtering and data fusion for optimization. The borehole test with K-DEV and a commercial logging tool produced sufficiently similar results. Furthermore, the issue of error accumulation due to drift over time of the MEMS gyro was successfully overcome by compensating with stationary measurements for the same attitude at the wellhead before and after logging, as demonstrated by the nearly identical result to the open hole. We believe that the methodology of K-DEV development and operational stability, as well as the data reliability of the prototype, were confirmed through these test applications.

Analysis of an ancient textiles from the Xianbei period tombs of the Shiveet Khairkhan site, Mongolia (몽골 시베트 하이르한 유적 선비 시기(1~3세기) 고분 출토 직물의 섬유와 염료 분석)

  • YUN Eunyoung;YU Jia;PARK Serin;AN Boyeon
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.4
    • /
    • pp.166-177
    • /
    • 2022
  • The Shiveet Khairkhan is located on Tsengel Som in the middle of Bayan-ulgi Aimag in the Altai region. Various remains have been identified, and it has been found to be an important area of the Eurasian steppe. In this study, the characteristics of textile fibers and dyes excavated from the tombs of the 1st~3rd century Xianbei period in the sites of Shiveet Khairkhan, Mongolia were investigated. As a result of analysis using optical microscopic observation and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) for fiber identification, green and yellow fabrics were identified as silk fabrics. To investigate the properties of the dye, the surface reflectance of the dyed fabric was measured using an fiber optic reflectance spectrophotometer for non-destructive analysis. The green fabric appeared similar to the reflection spectrum of indigo dye. In addition, as a result of component analysis using gas chromatography-mass spectrometry, isatin and indigotine were detected. Isatin and indigotine are characteristic components of indigo dye, and it was found that the green fabric of the tombs of the Xianbei period was dyed using indigo dye. It was difficult to identify the type of dye in the yellow fabric as a result of reflectance spectrum and gas chromatography analysis. Indigo plants are a dye used for blue dyeing from thousands of years ago, and many species are distributed around the world. It was confirmed that the fabric was relatively well preserved and indigo dye was used for the green Jikryeongui (garment with a straight collar) in the ancient tomb of the Xianbei period about 1,800 years ago, even though it was buried for a long time. Scientific investigation of textile cultural heritage is an essential process for conservation treatment, restoration, exhibition, and the creation of a conservation environment. It is expected that related research will be activated in the future and will be helpful in interpreting the living culture at the time, preserving textiles, and a conservation environment.

A Monitoring for Citizen Participation in Artificial Nest Boxes Using Mobile Applications (모바일 애플리케이션을 활용한 시민참여 인공새집 모니터링 방안 연구)

  • Kyeong-Tae Kim;Hyun-Jung Lee;Chae-Young Kim;Whee-Moon Kim;Won-Kyong Song
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.3
    • /
    • pp.221-231
    • /
    • 2023
  • Great tit (Parus major) is a bioindicator species that can measure environmental changes in urban ecosystems and plays an important role in maintaining health as a representative insectivorous bird. Researchers have utilized artificial nest box surveys to understand the reproductive ecology of the Paridae family of birds, including the Great tits, but it is difficult to conduct a macroscopic study due to spatial and temporal limitations. This study designed and applied a citizen-participatory monitoring of artificial nest boxes project to transcend the limitations of expert-centered monitoring methods. The Suwon Front Yard Bird Monitoring Team installed artificial nest boxes in green spaces in Suwon, Gyeonggi Province and observed the reproductive ecology of the Paridae family through the participation of voluntary citizen surveyors. Participants were recruited through an online survey from February 9 to February 22, 2021, and they directly performed from installation to observation of artificial next boxes from February 23 to August 31, 2021. Online education was provided to the volunteers for the entire monitoring process to lower the entry barrier for non-expert citizen surveyors and collect consistent data, and observation records were collected through a mobile app. A total of 98 citizen surveyors participated in the citizen-participatory monitoring of artificial nest boxes project, and 175 (84.95%) of the 256 distributed artificial nest boxes were installed in green spaces in Suwon City. Among the installed artificial nest boxes, the results of the citizen science project were confirmed for 173 (83.98%), excluding two boxes with position coordinate generation errors. A total of 987 artificial nest box observation records were collected from citizen surveyors, with a minimum of one time, a maximum of 26 times, and an average of 5.71±4.37 times. The number of observations of artificial birdhouses per month was 70 times (7.09%) in February, 444 times (44.98%) in March, 284 times (28.77%) in April, 133 times (13.48%) in May, 46 times (4.66%) in June, 6 times (0.61%) in July, and 4 times (0.41%) in August. Birds using the artificial nest boxes were observed in 57 (32.95%) of the 173 installed artificial nest boxes, and they included Great tit (Parus major) using 12 boxes (21.05%), Varied Tit (Parus varius) using 7 boxes (12.28%), and unidentified birds using 38 boxes (66.67%). This study is the first to consider citizen participation in the monitoring of artificial nest boxes, a survey method for the reproductive ecology of the Paridae family, including Great tits, and it can be utilized as basic data for the design of ecological monitoring combined with citizen science in the future.

Tightness of specimen sealing box in 20 L test chamber to evaluate building materials emitting pollutants (건축자재에서 방출되는 오염물질 평가 시 사용되는 20 L 시험챔버 시편홀더의 기밀성 개선)

  • Shin, Woo Jin;Lee, Chul Won;Kim, Man Goo
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.261-267
    • /
    • 2007
  • The 20 L small chamber test method is to evaluate pollutants such as TVOC, formaldehyde emitted from building materials. This method was only designed to evaluate the surface emission of sample exposed in the chamber. In this method, building materials cut with a fixed standard size are fixed in a sample sealing box. The sample sealing box is put into the 20 L test chamber. This chamber is ventilated at a standard air change rate with purified air for 7 days then the sample from the chamber is collected and analyzed to measure the emission rate of TVOC and formaldehyde. In this method, however, if the sealing box does not guarantee airtightness, accurate evaluation for the building materials can not be achieved due to the pollutants emitted from edge of the sample so called, edge effect. This edge effect can be much greater when evaluating panels such as plywood, flooring due to their surface treatment. In this study, flooring was tested to check airtightness of the sample sealing box with analytic results between 1L and 20 L test chamber. Furniture materials like LPM coated one side surface treatment and MDF coated both sides surface treatment with LPM were tested to identify whether the improvement of the sample sealing box airtightness is possible with the comparison between existing and improved test method that low VOC emission tape was used to seal the sample edge. After 7 days, MDF TVOC emission rate was different according to the existence and nonexistence of tape. The emission rate of the existing test method was $0.009mg/m^2h$ and that of improved test method was $0.003mg/m^2h$. Relative standard deviation for the existing test method was $0.004mg/m^2h$ and relative standard deviation for the improved test method was $0.002mg/m^2h$ when the same sample was analyzed three times. The improved test method in this study using low VOC emission tape was effective and able to reduce the heterogeneous effect of the edge from the sample sealing box.

Comparison of shear bond strength between various temporary prostheses resin blocks fabricated by subtractive and additive manufacturing methods bonded to self-curing reline resin (절삭 및 적층 가공법으로 제작한 임시 보철물 레진 블록과 재이 장용 자가중합 레진의 전단결합강도 비교)

  • Hyo-Min Ryu;Jin-Han Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.3
    • /
    • pp.189-197
    • /
    • 2023
  • Purpose. This study aimed to compare and evaluate the shear bond strength between various temporary prostheses resin blocks fabricated by subtractive and additive manufacturing methods bonded to self-curing reline resin. Materials and methods. The experimental groups were divided into 4 groups according to the manufacturing methods of the resin block specimens and each specimen was fabricated by subtractive manufacturing (SM), additive manufacturing stereolithography apparatus manufacturing (AMS), additive manufacturing digital light processing manufacturing (AMD) and conventional self-curing (CON). To bond the resin block specimens and self-curing resin, the reline resin was injected and polymerized into the same location of each resin block using a silicone mold. The shear bond strength was measured using a universal testing machine, and the surface of the adhesive interface was examined by scanning electron microscopy. To compare between groups, one-way ANOVA was done followed by Tukey post hoc test (α = 0.05). Results. The shear bond strength showed higher values in the order of CON, SM, AMS, and AMD group. There were significant differences between CON and AMS groups, as well as between CON and AMD groups. but there were no significant differences between CON and SM groups (P > .05). There were significant differences between SM and AMD groups, but there were no significant differences between SM and AMS groups. The AMS group was significantly different from the AMD group (P < .001). The most frequent failure mode was mixed failures in CON and AMS groups, and adhesive failures in SM and AMD groups. Conclusion. The shear bond strength of SM group showed lower but not significant bond strength compared to the CON group. The additive manufacturing method groups (AMS and AMD) showed significantly lower bond strength than the CON group, with the AMD group the lowest. There was also a significant difference between the AMD and SM group.

Prediction of Spring Flowering Timing in Forested Area in 2023 (산림지역에서의 2023년 봄철 꽃나무 개화시기 예측)

  • Jihee Seo;Sukyung Kim;Hyun Seok Kim;Junghwa Chun;Myoungsoo Won;Keunchang Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.427-435
    • /
    • 2023
  • Changes in flowering time due to weather fluctuations impact plant growth and ecosystem dynamics. Accurate prediction of flowering timing is crucial for effective forest ecosystem management. This study uses a process-based model to predict flowering timing in 2023 for five major tree species in Korean forests. Models are developed based on nine years (2009-2017) of flowering data for Abeliophyllum distichum, Robinia pseudoacacia, Rhododendron schlippenbachii, Rhododendron yedoense f. poukhanense, and Sorbus commixta, distributed across 28 regions in the country, including mountains. Weather data from the Automatic Mountain Meteorology Observation System (AMOS) and the Korea Meteorological Administration (KMA) are utilized as inputs for the models. The Single Triangle Degree Days (STDD) and Growing Degree Days (GDD) models, known for their superior performance, are employed to predict flowering dates. Daily temperature readings at a 1 km spatial resolution are obtained by merging AMOS and KMA data. To improve prediction accuracy nationwide, random forest machine learning is used to generate region-specific correction coefficients. Applying these coefficients results in minimal prediction errors, particularly for Abeliophyllum distichum, Robinia pseudoacacia, and Rhododendron schlippenbachii, with root mean square errors (RMSEs) of 1.2, 0.6, and 1.2 days, respectively. Model performance is evaluated using ten random sampling tests per species, selecting the model with the highest R2. The models with applied correction coefficients achieve R2 values ranging from 0.07 to 0.7, except for Sorbus commixta, and exhibit a final explanatory power of 0.75-0.9. This study provides valuable insights into seasonal changes in plant phenology, aiding in identifying honey harvesting seasons affected by abnormal weather conditions, such as those of Robinia pseudoacacia. Detailed information on flowering timing for various plant species and regions enhances understanding of the climate-plant phenology relationship.

Mitigation Effect on Airborne Particulate Matter Concentration by Roadside Green Space Type and Impact of Wind Speed (도로변 녹지 유형별 미세먼지 농도 저감 효과와 이에 대한 풍속의 영향 연구)

  • Tae-Young Choi;Da-In Kang;Jaegyu Cha
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.437-449
    • /
    • 2023
  • This study measured PM10 concentrations and wind speeds in buffer green spaces and neighborhood parks located along the road, and compared them with roadside measurementresults to understand the effect of mitigating PM10 concentrations by type of green space and the influence of wind speeds on it. As a result of the analysis, the effect of mitigating PM10 concentration was different depending on the type of roadside green space, and an increase in wind speed had a significant effect on reducing PM10 concentration. In buffer green areas with high planting density, wind speed was low and PM10 stagnated inside, resulting in the highest concentration. On the other hand, green areas in neighborhood parks with relatively low planting density had high wind speeds and the lowest PM10 concentration. The non-green area within the neighborhood park recorded the highest wind speed, which was advantageous for the spread of PM10, but the concentration was higherthan that of the green area. Therefore, in orderto reduce PM10 concentration in roadside green space, it is necessary to create green space with good ventilation, and the combined effect of green space and wind speed seems to be more advantageous in reducing PM10 concentration. Green spaces capture and remove PM inside, contributing to reducing the concentration of PM outside. In order to manage PM in the entire city and on roads, it is necessary to increase planting density and leaf area in roadside green spaces, such as buffer green spaces, so that PM can be removed within the green spaces. However, in green spaces such as neighborhood parks that are actively used by city residents, in orderto minimize damage to users due to PM, it is desirable to create green spaces with a structure that allows PM to spread to the outside rather than stagnate inside.