• Title/Summary/Keyword: 측정기법

Search Result 7,086, Processing Time 0.043 seconds

Marine ecosystem risk assessment using a land-based marine closed mesocosm: Proposal of objective impact assessment tool (육상 기반 해양 폐쇄형 인공생태계를 활용한 해양생태계 위해성 평가: 객관적인 영향 평가 tool 제시)

  • Yoon, Sung-Jin
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.88-99
    • /
    • 2021
  • In this study, a land-based marine closed mesocosm (LMCM) experiment was performed to objectively assess the initial stability of an artificial ecosystem experiment against biological and non-biological factors when evaluating ecosystem risk assessment. Changes in the CV (coefficient of value) amplitude were used as data to analyze the stability of the experimental system. The CV of the experimental variables in the LMCM groups (200, 400, 600, and 1,000 L) was maintained within the range of 20-30% for the abiotic variables in this study. However, the difference in CV amplitude in biological factors such as chlorophyll-a, phytoplankton, and zooplankton was high in the 600 L and 1,000 L LMCM groups. This result was interpreted as occurring due to the lack of control over biological variables at the beginning of the experiment. In addition, according to the ANOVA results, significant differences were found in biological contents such as COD (chemical oxygen demand), chlorophyll-a, phosphate, and zooplankton in the CV values between the LMCM groups(p<0.05). In this study, the stabilization of biological variables was necessary to to control and maintain the rate of changes in initial biological variables except for controllable water quality and nutrients. However, given the complexity of the eco-physiological activities of large-scale LMCMs and organisms in the experimental group, it was difficult to do. In conclusion, artificial ecosystem experiments as a scientific tool can distinguish biological and non-biological factors and compare and analyze clear endpoints. Therefore, it is deemed necessary to establish research objectives, select content that can maintain stability, and introduce standardized analysis techniques that can objectively interpret the experimental results.

Field Application and Performance Measurements of Precast Concrete Blocks Developed for Paving Roadways Capable of Solar Power Generation (태양광 도로용 프리캐스트 콘크리트 블록 포장의 현장 적용과 계측)

  • Kim, Bong-Kyun;Lee, Byung-Jae;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.69-76
    • /
    • 2020
  • Global warming is a very important problem as it causes rapid climate change and natural disasters. Therefore, researches related to renewable energy are being actively conducted while promoting policies such as reducing carbon dioxide emission and increasing the proportion of renewable energy. Solar power generation is being applied in urban areas like BIPV as well as existing idle areas outside the city. Therefore, in this study, precast concrete blocks developed for paving roadways capable of solar power generation were designed and constructed. For the evaluation of field applicability for 6 months, skid resistance and block settlement were measured. As a result of the experiment, it was found that skid resistance satisfies the standard of general roadway in Korea, but not the standard of highway. The skid resistance tended to decrease as time passed. In addition, the settlement of the block gradually increased slightly, but it is much smaller than the allowable settlement of the roadway. Therefore, it is necessary to establish a maintenance period and method based on the periodic measurement results in the future.

The Influence of the Founder's Social Competence and Social Capital on Access to Funding Sources (창업자의 사회적 역량과 사회적 자본이 투자유치 시도방식에 미치는 영향)

  • Park, Gyehyun;Kim, Dohyeon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.1
    • /
    • pp.21-35
    • /
    • 2021
  • Based on social capital theory, this study investigated the influence of the start-up founder's social competence on the start-up's access to funding sources and performance through the mediating role of the type of social network. This study aimed to examine two types of social networks empirically (i.e., personal networks and business networks) as social capital in analyzing the effect of the founder's social competence and social capital on the method of accessing funding sources. A self-report questionnaire was administered to 252 South Korean start-up founders whose businesses are based in South Korea. Path analysis and mediation effect analysis were performed by structural equation modeling(SEM) using STATA 16.1. This study examined the full mediating effect of the founder's social competence on his/her personal and business networks, respectively, and how the effect leads to different methods to approach funding sources. This is the first study in South Korea to analyze empirically how social competence has contrasting effects on personal and business networks as well as how each type of network varies in its influence on the method founders use to attract investment. This study is also significant in that it proposed a new methodology by utilizing the position generator as the measure of personal and business networks to analyze social networks in detail. The analyses of 252 survey data collected over a period of six months will be a valuable resource that may provide researchers, founders, investors, and other stakeholders in the start-up ecosystem with meaningful implications.

Analysis of Operation Efficiency in Private University Using the DEA (DEA를 활용한 국내 사립대학 운영 효율성 분석)

  • Bae, Young-Min;Han, Seung-Jo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.67-75
    • /
    • 2021
  • The structure of universities needs to be adjusted and reformed to cope with the decrease in admission resources and the quality of education due to the low birth rate and aging population. Such a policy is receiving much attention. To analyze the relative efficiency of private universities in Korea from the perspective of resource and performance, this study evaluated the efficiency of private university operation by applying a DEA(Data Envelopment Analysis) technique. The DEA measurements were compared with the diagnosis results of the department of education (Government) in 2018. The input and output variables used in the research analysis were utilized by the university's notification materials (public disclosure information). An analysis of the operational efficiency showed that 48% (12 universities) of the 25 DMUs (Decision Making Unit) were efficient for DEA-BCC models and that some of the capacity-building universities were operating efficiently. In addition, the DEA analysis found ways to improve inefficient groups through DEA-Additive results. This paper can be meaningful because it confirmed the relative efficiency of private universities and suggested improvement directions through the DEA method, which is characterized by the simultaneous consideration of various input and output factors. This will help apply the limited resources related to the input and output elements of each university.

Analyzing Vocabulary Characteristics of Colloquial Style Corpus and Automatic Construction of Sentiment Lexicon (구어체 말뭉치의 어휘 사용 특징 분석 및 감정 어휘 사전의 자동 구축)

  • Kang, Seung-Shik;Won, HyeJin;Lee, Minhaeng
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.144-151
    • /
    • 2020
  • In a mobile environment, communication takes place via SMS text messages. Vocabularies used in SMS texts can be expected to use vocabularies of different classes from those used in general Korean literary style sentence. For example, in the case of a typical literary style, the sentence is correctly initiated or terminated and the sentence is well constructed, while SMS text corpus often replaces the component with an omission and a brief representation. To analyze these vocabulary usage characteristics, the existing colloquial style corpus and the literary style corpus are used. The experiment compares and analyzes the vocabulary use characteristics of the colloquial corpus SMS text corpus and the Naver Sentiment Movie Corpus, and the written Korean written corpus. For the comparison and analysis of vocabulary for each corpus, the part of speech tag adjective (VA) was used as a standard, and a distinctive collexeme analysis method was used to measure collostructural strength. As a result, it was confirmed that adjectives related to emotional expression such as'good-','sorry-', and'joy-' were preferred in the SMS text corpus, while adjectives related to evaluation expressions were preferred in the Naver Sentiment Movie Corpus. The word embedding was used to automatically construct a sentiment lexicon based on the extracted adjectives with high collostructural strength, and a total of 343,603 sentiment representations were automatically built.

Non-face-to-face online home training application study using deep learning-based image processing technique and standard exercise program (딥러닝 기반 영상처리 기법 및 표준 운동 프로그램을 활용한 비대면 온라인 홈트레이닝 어플리케이션 연구)

  • Shin, Youn-ji;Lee, Hyun-ju;Kim, Jun-hee;Kwon, Da-young;Lee, Seon-ae;Choo, Yun-jin;Park, Ji-hye;Jung, Ja-hyun;Lee, Hyoung-suk;Kim, Joon-ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.577-582
    • /
    • 2021
  • Recently, with the development of AR, VR, and smart device technologies, the demand for services based on non-face-to-face environments is also increasing in the fitness industry. The non-face-to-face online home training service has the advantage of not being limited by time and place compared to the existing offline service. However, there are disadvantages including the absence of exercise equipment, difficulty in measuring the amount of exercise and chekcing whether the user maintains an accurate exercise posture or not. In this study, we develop a standard exercise program that can compensate for these shortcomings and propose a new non-face-to-face home training application by using a deep learning-based body posture estimation image processing algorithm. This application allows the user to directly watch and follow the trainer of the standard exercise program video, correct the user's own posture, and perform an accurate exercise. Furthermore, if the results of this study are customized according to their purpose, it will be possible to apply them to performances, films, club activities, and conferences

Diagnosis of Valve Internal Leakage for Ship Piping System using Acoustic Emission Signal-based Machine Learning Approach (선박용 밸브의 내부 누설 진단을 위한 음향방출신호의 머신러닝 기법 적용 연구)

  • Lee, Jung-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.184-192
    • /
    • 2022
  • Valve internal leakage is caused by damage to the internal parts of the valve, resulting in accidents and shutdowns of the piping system. This study investigated the possibility of a real-time leak detection method using the acoustic emission (AE) signal generated from the piping system during the internal leakage of a butterfly valve. Datasets of raw time-domain AE signals were collected and postprocessed for each operation mode of the valve in a systematic manner to develop a data-driven model for the detection and classification of internal leakage, by applying machine learning algorithms. The aim of this study was to determine whether it is possible to treat leak detection as a classification problem by applying two classification algorithms: support vector machine (SVM) and convolutional neural network (CNN). The results showed different performances for the algorithms and datasets used. The SVM-based binary classification models, based on feature extraction of data, achieved an overall accuracy of 83% to 90%, while in the case of a multiple classification model, the accuracy was reduced to 66%. By contrast, the CNN-based classification model achieved an accuracy of 99.85%, which is superior to those of any other models based on the SVM algorithm. The results revealed that the SVM classification model requires effective feature extraction of the AE signals to improve the accuracy of multi-class classification. Moreover, the CNN-based classification can be a promising approach to detect both leakage and valve opening as long as the performance of the processor does not degrade.

Counseling Outcomes Research Trend Analysis Using Topic Modeling - Focus on 「Korean Journal of Counseling」 (토픽 모델링을 활용한 상담 성과 연구동향 분석 - 「상담학연구」 학술지를 중심으로)

  • Park, Kwi Hwa;Lee, Eun Young;Yune, So Jung
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.517-523
    • /
    • 2021
  • The outcome of the consultation is important to both the counselor and the researcher. Analyzing the trends of research on the results of counseling that have been carried out so far will help to comprehensively structure the results of consultations. The purpose of this research is to analyze research trends in Korea, focusing on research related to the outcomes of counseling published in 「Korean Journal of Counseling」 from 2011 to 2021, which is one of the well-known academic journals in the field of counseling in Korea. This is to explore the direction of future research by navigating the knowledge structure of research. There were 197 studies used for analysis, and the final 339 keyword were extracted during the node extraction process and used for analysis. As a result of extracting potential topics using the LDA algorithm, "Measurement and evaluation of counseling outcomes", "emotions and mediate factors affecting interpersonal relationships", and "career stress and coping strategies" are the main topics. Identifying major topics through trend analysis of counseling performance research contributed to structuring counseling performance. In-depth research on these topics needs to continue thereafter.

Analyzing Brand Community Members' Desired Value : Focusing on Case of BTS and ARMY (브랜드 커뮤니티 구성원의 추구가치 분석 : 방탄소년단과 아미 사례를 중심으로)

  • Lee, Min-ha
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.3
    • /
    • pp.89-99
    • /
    • 2021
  • A brand community refers to a group of people who have a passion and loyalty for the brand, and is attracting attention as an effective marketing strategy to increase brand equity because it actively tends to support and promote the brand without expecting compensation. The objective of this study is to identify factors that are needed for sustainable brand community management. Existing studies on brand community management have mainly been conducted by quantitative methods measuring consumer satisfaction and dissatisfaction towards brand community activities, however, this study applied qualitative methods using means-end chains and laddering approaches in order to deeply identify a consumer's desired value on brand community activities. An in-depth interview of 41 members of BTS ARMY, a representative example of brand community, has been conducted and analyzed. The result of this study is as follows. In order to encourage active brand community activities, it is important to provide brand community members with a variety of high-quality brand-related content for a unique aesthetic experience, and a forum where all members can interact and exchange information and ideas to enhance brand value and experience. Finally, to nurture a strong brand community as a partner to co-create brand equity, rather than just a fan community, it is needed to build an environment that fosters opportunities for brand community members to increase self-respect and fulfillment through their brand community activities.

Applications of Thermal Imaging Camera to Detect the Physiological States Caused by Soil Fertilizer, Shading Growth, and Genetic Characteristic (열화상 카메라 활용을 위한 토양비료, 차광생육, 유전특성 차이 관련 작물생리 원격탐지)

  • Moon, Hyun-Dong;Cho, Yuna;Jo, Euni;Kim, Hyunki;Kim, Bo-kyeong;Jeong, Hoejeong;Kwon, Dongwon;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1101-1107
    • /
    • 2022
  • The leaf temperature is principally regulated by the opening and closing of stomata that is sensitive to various kinds of plant physiological stress. Thus, the analysis of thermal imagery, one of remote sensing technique, will be useful to detect crop physiological condition on smart farm system and phenomics platform. However, there are few case studies using a thermal imaging camera on the agricultural application. In this study, three cases are presented: the effect of lime fertilizer on the rice, the different physiological properties of soybean under shading condition, and the screening of soybean breeds for salinity tolerance characteristic. The leaf temperature measured by thermal imaging camera on the three cases was used effectively to the physiological change and characteristics. However, the thermal imagery analysis requires considering the accuracy of measured temperature and the weather conditions that affects to the leaf temperature.