• Title/Summary/Keyword: 충진 공정

Search Result 211, Processing Time 0.026 seconds

PU-AC 고분자 담체를 이용한 염색폐수처리

  • 김서연;신원식;김영훈;송동익
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2004.05a
    • /
    • pp.312-315
    • /
    • 2004
  • 염색가공 공정에서 배출되는 염색폐수는 염색 가공공정이나 사용하는 염료등에 따라 폐수량과 성상의 변화가 심하기 때문에 처리에 많은 어려움이 있다. 일반적인 염색폐수 처리방법으로는 물리화학절인 응집침전법과 생물학적인 활성슬러지법을 단독 또는 조합하여 주로 사용하여 왔다. 그러나 최근에는 기존시설의 처리 향상을 위한 다각적인 기술개발이 시도되고 있으며 그 일환으로 본 연구에서는 활성탄을 담지한 폴리우레탄 담체를 개발하여 염색폐수를 처리하고자 하였다. 본 연구에서는 담체를 이용한 염색폐수의 생물학적 처리 시 여러 인자들, 즉 COD/N 비, DO 농도, 담체의 충진율 등의 영향을 조사하기 위하여 회분식 실험을 수행하였다. 또한 회분식 실험에서 얻은 최적조건을 이용하여 파일럿 실험도 함께 수행하였다. COD/N 비가 COD 제거에 미치는 영향을 살펴보기 위해 COD/N 비를 조절하지 않은 경우와 COD/N 비를 2-3으로 조절한 경우에 대해서 비교하였다. 실험결과 염색폐수의 초기 COD 농도가 1,000 ppm일 때, 처리 후 COD 농도는 COD/N 비를 조절하지 않았을 경우 860 ppm (제거효율 = 18%), COD/N 비가 2일 경우 550ppm (제거효율 = 52%), COD/N 비가 3의 경우 390 ppm (제거효율 = 57%)으로 각각 나타났다. DO 농도가 COB 제거에 미치는 영향을 알아보고자 DO 농도를 1, 6, 7 mg/L로 변화시켰다. 그 결과 DO의 농도가 1 mg/L일 경우 COD 제거효율은 20% 정도였으나, DO 농도가 6 mg/L이상에서는 모두 80%에 가까운 제거효율을 나타내었다. 담체 충진율의 경우, 10% 충진시 40%, 20% 충진시 50%, 30% 충진시 70%의 제거효울을 각각 나타내었다. 회분식 실험에서 얻은 최적조건으로 파일럿 반응기를 100일 이상 운전한 결과 염색폐수의 COD 농도변화는 1,000ppm에서 380ppm로 평균 60%이상 제거되는 높은 효율을 보였다. 또 담체 첨가의 영향을 살펴보기위해, 담체를 충진하지 않은 조건에서 파일럿 반응기를 운전한 결과 평균 COD 제거율은 50%로 비교적 낮은 효율을 보였다.

  • PDF

Highly Efficient Mechanical Separation Process for the Recycling of Waste Jelly-Filled Communication Cables (고효율 기계적 박리기술을 이용한 폐 젤리충진 통신케이블 재활용 연구)

  • Lee, Sooyoung;Uhm, Sunghyun;Seo, Minhye;Lee, Minseok;Cho, Sungsu
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.37-42
    • /
    • 2016
  • Highly efficient and environmentally friendly mechanical process was developed for the higher recovery rate and productivity in the recycling of waste jelly-filled communication cables. Only the simplest mechanical method was designed and built for a continuous process, further proved experimentally along with the addition of several parts such as brush-type rollers and scrappers. In this process, the recovery rate and productivity were 98% and 55 Kg/hr respectively. This process is thought to be simple but highly advanced method for the commercialization of green process.

Development of Al-SiC Metal Matrix Composites by using Hot Press Forming Technologies (열간가압성형기술을 이용한 Ai-SiC 금속기 복합재료 개발)

  • Jeon, Ho-Jin;Kim, Tae-Won
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.9-17
    • /
    • 2007
  • Powder metallurgy has been employed for the development of SiC particle reinforced aluminum metal matrix composites by means of hot isotropic pressing and vacuum hot pressing. A material model based on micro-mechanical approach then has been presented for the processes. Densification occurs by the inelastic flow of matrix materials during the consolidation, and consequently it depends on many process conditions such as applied pressure, temperature and volume fraction of reinforcement. The model is implemented into finite element software so that the process simulation can be performed enabling the predicted relative density to be compared with experimental data. In order to determine the performance of finished products, further tensile test has been conducted using the developed specimens. The effect of internal void of the materials on mechanical properties therefore can be investigated.

Studies on Whole Cell Immobilized Glucose Isomerase - II. Operational Studies on the Batchwise and Continuous Isomerization of D-Glucose - (포도당 이성화 효소의 세포 고정화에 관한 연구 - 제 2 보 : 회분식 및 연속 반응조를 사용한 포도당의 이성화 -)

  • Ahn, Byung-Yoon;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.249-257
    • /
    • 1979
  • Using the whole cell immobilized glucose isomerase which was prepared in the previous work (Korean J. Food Sci. & Technol., 11(3), 192 (1979), the specific activity of the immobilized enzyme was 48.1 units in the batch reaction system and 114 units in the continuous reaction system per g of matrix, respectively. In the continuous reactor the voidity was 0.36, which was suitable for the packed bed reactor. This immobilized enzyme showed a good operational stability of 115 days of half life which was sufficient for the continuous operation. The experimental result showed that 55 % of the substrate was converted to the product in the packed bed reactor. The productivity was dependent on the flow rate, column geometry, enzyme loading, and substrate concentration. An intrapaticle diffusion was observed by the effectiveness factor of 0.75 and interparticle diffusion by the decrease of Km' with increasing the superficial velocity.

  • PDF

Study on the Change of Relative Humidity in Subsea Pipeline According to Drying Method (건조 공법에 따른 해저 파이프라인 내부 상대습도 변화 특성 연구)

  • Yang, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.406-413
    • /
    • 2022
  • The subsea pipeline pre-commissioning stage consists of the following processes: Flooding, Venting, Hydrotesting, Dewatering, Drying, and N2 Purging. Among these processes, drying and nitrogen purging processes are stipulated to reduce and maintain the relative humidity below dew point to prevent the generation of hydrate and the risk of gas explosion in the pipeline during operation. The purpose of this study is to develop an analysis method for the air drying and nitrogen purging process during pre-commissioning of the subsea pipeline, and to evaluate the applicability of the analysis method through comparison with on-site measurement results. An analysis method using Computational Fluid Dynamics (CFD) was introduced and applied as a method for evaluating the relative humidity inside a subsea pipeline, and it was confirmed that analysis results were in good agreement with the on-site measurement results for the air drying and nitrogen purging process of the offshore pipeline. If the developed air drying and nitrogen purging analysis method are used as pre-engineering tools for pre-commissioning of subsea pipelines in the future, it is expected to have a significant impact on the improvement of work productivity.

Conversion of CO2 and CH4 through Hybrid Reactor Composed of Plasma and Catalyst at Atmospheric Pressure (상압 플라즈마-촉매 하이브리드 반응기를 통한 CO2와 CH4의 전환처리)

  • Kim, Tae Kyung;Nguyen, Duc Ba;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.497-502
    • /
    • 2014
  • The conversion reaction of methane and carbon dioxide at an atmospheric pressure plasma reactor filled with Ni-$Al_2O_3$ and Ni-$MgAl_2O_4$ catalyst was performed. Effects of various process parameters such as the applied electric power, reaction gas flow rate, reactor temperature, mixing ratio of reactants and the presence of the catalyst on the reaction between methane and carbon dioxide were analyzed. From the analysis of the contribution of the catalyst in the reaction step, even if the temperature raised to $400^{\circ}C$, there was no spontaneous catalytic conversion of methane and carbon dioxide without plasma discharges. When the catalysts for the conversion of methane and carbon dioxide would be adopted to the plasma reactor, the careful selection of suitable catalysts and process parameters should be essential.

Upcycling of Waste Jelly-Filled Communication Cables (폐 젤리충진 통신케이블 업사이클링 연구)

  • Cho, Sungsu;Lee, Sooyoung;Hong, Myunghwan;Seo, Minhye;Lee, Dukhee;Uhm, Sunghyun
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.29-35
    • /
    • 2015
  • A feasibility test was carried out for upcycling of waste jelly-filled communication cables together with the development of environmentally friendly processes and equipments. High pressure water injection is proved to be an exceptionally environmentally friendly and highly efficient mechanical process. A batch-type cable barking equipment is designed and built on the basis of computational fluid dynamics modelling. It is optimized in terms of energy consumption and productivity with very high copper recovery of 99.5%. Copper nano-powder is prepared by an electrical wire explosion in ethanol media in order to improve the value of final products, and the preliminary economical assessment is also conducted.

A Study on the Forming Technology of Multi-stage Aircell Filling Valves (다단 에어셀 충진 밸브성형기술에 관한 연구)

  • Kim, Mi-Suk;Park, Dong-Sam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.57-64
    • /
    • 2017
  • Today, due to the environmental regulations regarding air pollution in the EU, the use of EPS (Styrofoam) as the cushioning material in the packaging industry is decreasing. In effect, air cushioning based cushioning materials are rapidly expanding into the market and replacing EPS, due to their excellent buffering ability and environmental friendliness. This is a new selective filling type air filling material manufacturing technology that affords improvements in the amount of raw materials required, its processing and its aesthetic appearance compared to the conventional air filling cushioning materials. In this study, a multi-stage air cell filling valve molding technology is developed based on selective filling technology, which allows packages to be selectively filled in various forms by applying valve forming structure technology. This multi-stage air cell filling valve molding technology is a technique in which a plurality of injection ports are formed by laminating three layers of films, viz. a first injection film, a valve film, and a second injection film having valve ends. In the conventional technology, a separate external air injection path for injecting air into a plurality of connected air bags is needed. However, in the proposed system, an external air injection path is formed inside the air bag, Due to the lack of need for an injection furnace, the raw material and process are reduced and air is injected and then discharged, while the air bag is reduced in length to 63 ~ 66% of its normal value. The outer surface of the outer air injection path is integrated inside by maintaining the original length of the cross section, while the unnecessary folded air is injected into the interior of the air bag, This smart air filling type cushioning material manufacturing technology constitutes a big improvement over the existing technologies.

Boots Gap Liner Casting Process Development of Solid Rocket Motor (고체 추진기관 적용 부츠갭 라이너 충진 공정 개발)

  • Kim, Yong-Woon;Kim, Jin-Yong;Lee, Won-Bok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.211-214
    • /
    • 2007
  • Solid rocket motor that includes AL powder in propellant gets slag during static firing test. Slag is piled up to weak area in motor case and causes dangerous phenomena like explosion of motor. In this paper, It is shown that boots gap liner casting process was developed and static firing test was performed with better results.

  • PDF