• Title/Summary/Keyword: 충진

Search Result 1,587, Processing Time 0.021 seconds

Geochemical Environments of Copper-bearing Ore Mineralization in the Haman Mineralized Area (함안지역 함 동 광화작용의 지화학적 환경)

  • Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The Haman mineralized area is located within the Cretaceous Gyeongsang Basin along the southeastern part of the Korean peninsula. Almost all occurrences in the Haman area are representative of copper-bearing polymetallic hydrothermal vein-type mineralization. Within the area are a number of fissure-filling hydrothermal veins which contain tourmaline, quartz and carbonates with Fe-oxide, base-metal sulfide and sulfosalt minerals. The Gunbuk, Jeilgunbuk and Haman mines are each located on such veins. The ore and gangue mineral paragenesis can be divided into three distinct stages: Stage I, tourmaline + quartz + Fe-Cu ore mineralization; Stage II, quartz + sulfides + sulfosalts + carbonates; Stage III, barren calcite. Equilibrium thermodynamic data combined with mineral paragenesis indicate that copper minerals precipitated mainly within a temperature range of $350^{\circ}C$ to $250^{\circ}C$. During early mineralization at $350^{\circ}C$, significant amounts of copper ($10^3$ to $10^2\;ppm$) could be dissolved in weakly acid NaCl solutions. For late mineralization at $250^{\circ}C$, about $10^0$ to $10^{-1}\;ppm$ copper could be dissolved. Equilibrium thermodynamic interpretation indicates that the copper in the Haman-Gunbuk systems could have been transported as a chloride complex and the copper precipitation occurred as a result of cooling accompanied by changes in the geochemical environments ($fs_2$, $fo_2$, pH, etc.) resulting in decrease of solubility of copper chloride complexes.

Removal of Dissolved Heavy Metals through Biosorption onto Indigenous Bacterial Biofilm Developed in Soil (토양 내 토착 미생물에 의한 바이오필름 형성과 흡착을 통한 용존 중금속 제거)

  • Kim, Sang-Ho;Chon, Hyo-Taek;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.435-444
    • /
    • 2009
  • In situ stabilization of heavy metals through adsorption onto indigenous bacterial biofilm developed on soil particles was investigated. Biofilms were developed in soil columns by supply of various carbon sources such as acetate, lactate and glucose. During development of biofilms, acetate, lactate, and glucose solutions were flew out from the soil columns with volume ratios of 98.5%, 97.3%, and 94.7%, respectively, when compared with soil column supplied with deionized water. Decrease in effluent amounts through the soil columns amended with carbon sources over time indicated the formation of biofilms resulting in decrease of soil porosity. Solutions of Cd, Cr(VI), Cu, Pb, and Zn were injected into the biofilms supported on soil particles in the columns, and the dissolved heavy metals in effluents were determined. Concentrations of dissolved Cd, Cr(VI), Cu, and Zn in the effluents through biofilm columns were lower than those of control column supplied with deionized water. The result was likely due to enhanced adsorption of the metals onto biofilms. Efficiency of metal removal by biofilms depended on the type of carbon sources supplied. The enhanced removal of dissolved heavy metals by bacterial biofilms in this study may be effectively applied to technical development of in situ stabilization of heavy metals in natural soil formation contaminated with heavy metals.

Removal of Volatile Organic Contaminant(toluene) from Specific Depth in Aquifer Using Selective Surfactant-Enhanced Air Sparging (계면활성제와 폭기를 이용한 대수층의 특정깊이에 존재히는 휘발성 유기오염물질 (톨루엔)의 휘발제거)

  • Song, Young-Su;Kwon, Han-Joon;Yang, Su-Kyeong;Kim, Heon-Ki
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.565-571
    • /
    • 2010
  • An innovative application of surfactant-enhanced air sparging(SEAS) technique was developed in this study. Using a laboratory-scale physical model packed with water-saturated sand, air sparging was implemented to remove water-dissolved toluene that was introduced into a specific depth of the system with finite vertical width prior to sparging. An anionic surfactant(Sodium dodecylbenzene sulfonate) was introduced into the contaminated layer as in dissolved form in the toluene-contaminated solution for SEAS, whereas no surfactant was applied in the control experiment. Due to the suppressed surface tension of water in the surfactant(and toluene)-containing region, the toluene removal rate increased significantly compared to those without surfactant. More than 70% of the dissolved toluene was removed from the contaminated layer for SEAS application while less than 20% of toluene was removed for the experiment without surfactant. Air intrusion into the contaminated layer during sparging was found to be more effective than that without surfactant, enhancing air contact with toluene-contaminated water, which resulted in improved volatilization of contaminant. This new method is expected to open a new option for remediation of VOC(volatile organic compound)-contaminated aquifer.

Aldehydes formation in the treatment of humic acid by Ozone/GAC hybrid process (오존/활성탄 혼합공정에 의한 부식산 처리에 따른 알데히드류의 생성특성)

  • Choi, Eun-Hye;Kim, Kei-Woul;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.535-541
    • /
    • 2005
  • The formation of aldehydes as by-product was investigated in the treatment of humic acid by Ozone/GAC hybrid process. Ozone/GAC hybrid process was operated under varying initial pH (pH 3~pH 11) and temperature ($0^{\circ}C$, $20^{\circ}C$, $40^{\circ}C$) at an ozone dose of 0.08 g $O_3/g$ DOC and GAC amount of 16.5 v/v%. The results were compared with those of GAC adsorption and ozone alone process. The formed aldehydes were derivatized by PFBOA method and quantified by GC/PDECD. Formaldehyde and glyoxal were identified as the substantial aldehydes in the treatment of humic acid by ozone/GAC hybrid process. Quantities of formaldehyde and glyoxal formed in ozone/GAC hybrid process were less than one in ozone alone process. In ozone/GAC hybrid process, formaldehyde was produced with a considerable concentration of 400 ppb at pH 11 and pH 7 at the beginning of the treatment, and then the concentration was decreased with time. And, the concentrations of formaldehyde and glyoxal were increased with an increase of temperature. They were respectively 520 ppb and 120 ppb at the beginning of the treatment at $40^{\circ}C$.

Kinetic Behavior of Immobilized Tyrosinase on Carbon in a Simulated Packed-Bed Reactor (충전층에서 탄소에 고정시킨 Tyrosinase의 반응속도에 관한 연구)

  • Shin, Sun Kyoung;Kim, Kyeo-Keun
    • Analytical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.66-74
    • /
    • 1997
  • Influence of the axial dispersion on immobilized enzyme catalytic bed was investigated in order to examine the kinetic behavior of the biocatalysis. The enzyme employed in this study was the tyrosinase(EC 1.14.18.1) immobilized on carbon support : this system requires two substrates of phenol and oxygen. This enzyme has potential application for phenol degradation in waste water. A simulated reactor was a packed-bed reactor of 2.54cm in diameter and 10cm long, loaded with the immobilized carbon particle with an average diameter of $550{\mu}m$. A phenol feed in the strength of 55.5mM(5220ppm) was used to observe the behavior of the immobilized enzyme column at three different dissolved oxygen levels of 0.08445mM(2.7ppm), 0.1689mM(5.4ppm) and 0.3378mM(9.5ppm) with the flow rates in the range of 60(1mL/s) to 180mL/min(3mL/s). Examination of the Biot number and Damkolher numbers of the immobilized system enables us to eliminate the contribution of external mass transfer to set of differential equations derived from the dispersion model. Solution of the equation was finally obtained numerically with the application of the Danckwert boundary conditions and the assumed zero-and first order rates on the non-linear two substrate enzyme kinetics. Higher conversion of phenol was observed at the low flow rates and at the higher oxygen concentration. Comparison of axial dispersion and plug flow model showed that no detectable difference was observed in the column outlet conversion between the axial and the plug flow models which was in complete agreement with the previous studies.

  • PDF

The Physical Properties of Port Type Crack Injection Method Using Latex Elastic Storage Tube (라텍스 탄성 저장관을 활용한 포트식 균열주입 공법의 물리적 특성에 관한 연구)

  • Kim, Eun-Young;Sho, Kwang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.68-75
    • /
    • 2018
  • In this study, to solve the problems of the conventional crack repair and injection method, high elasticity latex was used as the material of the storage tube to withstand the high pressure in the center part differently from the general port. When the repair solution was injected into the crack part, The TPS method was developed so that the air existing in the TPS can be discharged. In addition, a new infusion port in which a valve blocking the backflow of the remediation solution was installed at the injection port was developed and the physical characteristics of the port were analyzed. As a result of the evaluation, it was found that the filling rate of the remedial solution was improved compared to the existing ordinary injector method, and the cracks were completely filled in the test conditions. Compressive strength and tensile strength after repair showed about 20% decrease after repair in case of using ordinary injector method, while TPS method showed about 2~7% increase after repair. The results of this study showed that the injection port method using the elastic storage tube increased the injection performance and the quality after repair compared to the conventional injector method. The result of this study is expected to be utilized as the basic data for application and commercialization of the result to the practical structure.

Trend of the welding technology for surface modification (표면개질을 위한 오버레이용접 기술개발 현황)

  • 백응률
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1998.11a
    • /
    • pp.19-20
    • /
    • 1998
  • 오버레이용접에 의한 표면개질기술(Weld Surfacing or Hardfacing Technology)은 내식성, 내 마모성, 또는 내열성을 갖는 합금의 용접재료를 모재 표면에 균일하게 용착(오버레이:Ovedayer)시킴으로써 목적하는 재료의 표면성질을 향상시키는 표면처리의 한 방법이으로써 1922년 Stoody가 Steel Tube에 Cr합금 분말을 충진한 용접봉을 제조하여 석유시추용 회전드릴의 선단 표면을 오버 레이 용접시켜 내마모성을 획기적으로 개선시킴으로써 이루어 졌다. 초기 오버레이 용접기술은 발전설비I 제철설비I 시벤트설비, 그리고 제지설비 등 주로 설비 부품들의 표면부 내마모성을 개선시키는 방향으로 주로 연구 개발이 이루어졌으나, 기술개발의 진전으로 탈황설비 둥의 표면부 내식성 향상, 연속주조롤 표면부의 내산화성, 내열피로성, 내마모 성 향상 둥을 위해 점차 산업전반에 널리 이용되고 있으며, 설비의 고도화 및 장수명화가 요구되 면서 본 기술의 중요성 또한 점차 부각되고 있다. 그림 1은 연강의 모재 위에 셀프쉴드플럭스코어드와이어(Self-Shield Flux Cored Wire:SS-FCW, 이하 55-FCW라 기술함)를 사용하여 오버레이 용접올 하는 장면을 도식적으로 나 타낸 것이다. 모재와 전극재인 용접봉(S5-FCW) 사이에서 아크가 발생되고, 아크열에 의해서 용접 봉 및 모재 일부가 용융되면서 모재 표면에 새로운 오버레이 표면층이 형성된다. 통상 오버레이 층의 1층 두께는 2-6mm 내외이며, 단층 혹은 다충 오버레이를 자유롭게 실시한다. 오버레이층의 물성은 아크열에 의한 모재로의 용입정도에 따라 1층부에서는 모재의 영향을 크게 받지만 오버레 이충 수가 증가된 3층부에서 부터는 전적으로 용접봉의 성분에 좌우된다. 사진 1은 연강(55-41)의 모재위에 크롬탄화물이 다량 함유된 고크롬 탄화물형 내마모재가 오버 레이된 내마모 복합강판 (wear plate)의 단면 미세조직 사진으로써 모재부와 오버레이충을 함께 보여주고 있다. 모재와 오버레이 충간의 경계면은 모재 일부가 용융된 후 웅고하면서 형성됨으로 인해서 도금이나 용사층과는 달리 매우 견고하게 결합되어 있다. 따라서 계면부의 탈락이라는 문 제점은 거의 없어 심한 응력을 받는 기계구조물 및 부품에도 본 기술은 널리 적용되고 있다. 그리고 사진 1에서 알 수 있는 바와 같이 모재와는 전혀 상이한 재료를 자유로이 선택하여 표면 유효층 일부만 오버레이시키며I 주조 및 단조가 불가능한 재료까지도 표면부에 오버레이 시킴으로 서 부품 및 설비의 제조에 있어 재료비의 절감과 제품의 수명이 획기적으로 개선될 수 있다. 그리고 최근에는 도금 빛 용사 둥과 같은 표면처리를 할 경우임의 소재 표면에 도금 및 용 사에 용이한 재료를 오버레이용접시킨 후 표면처리를 함으로써 보다 고품질의 표면층을 얻기위한 시도가 이루어지고 있다. 따라서 국내, 외의 오버레이 용접기술의 적용현황 및 대표적인 적용사례, 오버레이 용접기술 및 용접재료의 개발현황 둥을 중심으로 살펴봄으로서 아직 국내에서는 널리 알려지지 않은 본 기 술의 활용을 넓이고자 한다.

  • PDF

Apparent Densification Rate and Initial Permeability of NiCuZn Ferrite Depended on Relative Packing Density (NiCuZn Ferrite의 겉보기 고화속도와 초기투자율의 충진율 의존성에 관한 연구)

  • 류병환;이정민;고재천
    • Resources Recycling
    • /
    • v.7 no.4
    • /
    • pp.27-34
    • /
    • 1998
  • In this research, the processing control of NiCuZn Ferrite (NCZF) had been studied. NiCuZn Ferrite, which calcined at $700^{\circ}C$ for 3 bours, was ball milled for about 60 hours to ill김ke a size of $0.5\mu\;extrm{m}$ followed by granulation using spray dryer Apparent densincatioo rate and initial permeability of NiCuZn Ferrite with an initial packing density had been investigated as f follows. 1.The relative packing density of NCZF green body increas$\xi$d in the range of 48.6-56.8% with an increased forming pressure of 20-170 MPa. 2. The higher the relative pac퍼ng density of NCZF and the sintering temperature are, the higher the initial densification rate. The increased bulk rlcnsity of NCZF was attributed to the densification rate with decreased open pore and increased closed pore as the relative packing density, sintering temperature, and sinteriog tim$\xi$ increased. 3. The initial P permeability of NCZF with constant composition is logarithmically proportional to the bulk density of NCZF sintered at $875~925^{\circ}C$ for 0-5h, and strongly depended on the relative packing density of NCZF green body. The empirical equation is as f follows; log $\mu$i=$G1{\times}BD$+$G2{\times}RPD$+b(0);where, G1, G2; gradient, B.D: bulk density, RPD; relative packing density, b(0); intercept.

  • PDF

A Study on Drying Kinetics of Low Rank Coal(Indonesia-IBC) through the Fixed-Bed Reactor Experiments (저등급석탄(低等級石炭)(인도네시아 IBC)의 고정층(固定層) 반응기(反應器) 실험(實驗)을 통한 건조(乾操) 반응속도론(反應速度論) 연구(硏究))

  • Kang, Tae-Jin;Jeon, Do-Man;Jeon, Young-Sin;Kang, Suk-Hwan;Lee, Si-Hyun;Kim, Sang-Do;Kim, Hyung-Taek
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.43-50
    • /
    • 2010
  • The crisis of energy gives rise to the growing concerns over continuing uncertainty in the energy market. Under these circumstances, there are also increasing interests on coals. In particular, Low Rank Coal (LRC) is receiving gradual attentions from green industry. But due to is high moisture content range from 30 - 60%, drying process has to be preceded before being utilized as power plant. In this study drying kinetics of LRC is induced by using a fixed-bed reactor. The drying kinetics was evaluated in from of the particle size, the inlet gas temperature, the drying time, the gas velocity, and the LID ratio. The consideration of the reynold's number was taken for correction of gas velocity, particle size and LID was taken for correction of reactor diameter, packing height of coal. As being seen as characteristic of drying coal, it can be found that fixed-bed reactor can contributed to active drying of free water. In this sense, it could be considered that phase boundary reaction is appropriate mechanism.

Experimental validations of fire-resistant materials for protecting LPG small storage tank from building fires (건물 화재 시 LPG소형저장탱크 보호용 화재 저항 재료 성능 실증)

  • Kim, Seung-Hwan;Kim, Kyung-Sik;Heo, Seung-Geon;Lee, Jae-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.18-24
    • /
    • 2020
  • The purpose of this study is to validate thermal hinderance effects, i.e., feasibilities, of fire-proof structure for LPG tank exposed to fire from adjacent burning building. The panel materials suggested for the fire-proof structure are (1) 10 mm-thick wood, (2) wood with fireproof coating, (3) 75 mm-thick Expanded Polystyrene, (4) 75 mm-thick glass wool filled sandwich panel, and (5) 75 mm-thick autoclaved lightweight concrete. The square planar fire source of 1 ㎡, a matrix of nozzles releasing 120-140 g/s of LPG, is used to heat up the wall and the tank beyond, mimicking heat transfer from burning exterior wall finishes. The feasibility is tested by inspecting structural integrity after test, and then by examining temperatures at both sides of panels and tank's front surface as well as heat fluxes. As a result, it can be concluded that, among the suggested sample materials, fire-proof wall with ALC panel only showed the feasibility for explosion prevention with the proven evidences of structural integrity and least increase in temperature of tank.