• Title/Summary/Keyword: 충전장치

Search Result 481, Processing Time 0.027 seconds

The Effect of Column Process on the Treatment of Municipal Solid Waste Leachate (Column 장치를 이용한 도시쓰레기 침출수의 처리효과)

  • Han, Mun-Gyu;Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.3
    • /
    • pp.201-208
    • /
    • 1992
  • Municipal landfill leachate, a major source of soil contamination and ground water pollution, causes serious environmental problems. To investigate the removal efficiency of pollutants in the leachate by sand, briquet ash, fly ash, and activated carbon columns, COD and some pollutants in the leachate passed through each column for 8 weeks were examined. Average COD removal efficiency for 8 weeks was 83%, 45%, and 43% by activated carbon, briquet ash and fly ash columns, respectively. COD was not effectively reduced by sand column. Average ${NH_4}\;^+$ removal efficiency for 8 weeks was more than 60% by ail columns. Hardness was effectively removed for 8 weeks by fly ash and activated carbon columns. Anoins including $PO_4\;^{3-}$, $CI^-$ and $SO_4^{2-}$ were not removed by all columns.

  • PDF

A Study on the Properties Analysis of an Iron Fittings Type CSST Damaged by the PCITS (PCITS에 의해 소손된 강이음쇠형 CSST의 특성 해석에 관한 연구)

  • Lee, Jang-Woo;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.121-127
    • /
    • 2016
  • This study analyzed the structural and electrical characteristics of an iron fittings type Corrugated Stainless Steel Tubing (CSST) damaged by the Primary Current Injection Test System (PCITS). CSST consists of cladding, tube, nuts, clamp ring, flare cap, socket, and ball valve. For an evaluation of the dielectric withstand voltage, the area between the live part and non-live part of the CCST shall withstand a voltage of 220 V AC for one minute. For an evaluation of the insulation performance by 500 V DC, it is required that the insulation exceed more than $1M{\Omega}$ before the temperature rise test, $0.3M{\Omega}$ after the test. Although the average resistance of the product was $11.5m{\Omega}$, that of the product damaged at a current of 130 A by the PCITS was $11.50m{\Omega}$. Furthermore, parts of the cladding were melted and black smoke appeared when a current of 130 A applied for 10 s. After 60 s, most parts were heated and turned red. At 120 s, the parts that turned red had widened. Although it did not form a normal distribution because the P value was 0.019 with a confidential interval of 95%, it revealed outstanding characteristics with an AD (Anderson-Darling) value of 0.896 and a standard deviation of 0.5573.

REAL-TIME MEASUREMENT OF DENTINAL TUBULAR FLUID FLOW DURING AND AFTER AMALGAM AND COMPOSITE RESTORATIONS (아말감과 복합레진의 수복 과정과 수복 후 발생하는 상아세관액 흐름의 실시간 측정)

  • Kim, Sun-Young;Cho, Byeong-Hoon;Baek, Seung-Ho;Lim, Bum-Sun;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.6
    • /
    • pp.467-476
    • /
    • 2009
  • The aim of this study was to measure the dentinal tubular fluid flow (DFF) during and after amalgam and composite restorations. A newly designed fluid flow measurement instrument was made. A third molar cut at 3 mm apical from the CEJ was connected to the flow measuring device under a hydrostatic pressure of 15 $cmH_2O$. Class I cavity was prepared and restored with either amalgam (Copalite varnish and Bestaloy) or composite (Z-250 with ScotchBond MultiPurpose: MP, Single Bond 2: SB, Clearfil SE Bond: CE and Easy Bond: EB as bonding systems). The DFF was measured from the intact tooth state through restoration procedures to 30 minutes after restoration, and re-measured at 3 and 7days after restoration. Inward fluid flow (IF) during cavity preparation was followed by outward flow (OF) after preparation, In amalgam restoration, the OF changed to IF during amalgam filling and slight OF followed after finishing. In composite restoration, application CE and EB showed a continuous OF and air-dry increased rapidly the OF until light-curing, whereas in MP and SB, rinse and dry caused IF and OF, respectively. Application of hydrophobic bonding resin in MP and CE caused a decrease in flow rate or even slight IF. Light-curing of adhesive and composite showed an abrupt IF. There was no statistically significant difference in the reduction of DFF among the materials at 30 min. 3 and 7 days after restoration (p > 0.05).

Development of State of Charge and Life Cycle Evaluation Algorithm for Secondary Battery (이차전지의 상태 감시 및 수명 예측 알고리즘 개발)

  • Park, Jaebeom;Kim, Byeonggi;Song, Seokhwan;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.369-377
    • /
    • 2013
  • This paper deals with the state of charge(SOC) and life cycle evaluation algorithm for lead-acid battery, which is essential factor of the electric vehicle(EV) and the stabilization of renewable energy in the smart grid. In order to perform the effective operation of the lead-acid battery, SOC and life cycle evaluation algorithm is required. Specific gravity with the change of electrolyte temperature inside battery case should be obtained to evaluate the SOC of lead-acid battery, however it is difficult to measure the electrolyte temperature of sealed type lead-acid battery. To overcome this problem, this paper proposes the equation of thermal transmission to compensate internal temperature of the lead-acid battery. Also, it is difficult to exactly evaluate the life cycle of battery, depending on the operation conditions of lead-acid battery such as charging and discharging state, self discharging rate and environmental issue. In order to solve the problem, this paper presents the concept for gravity accumulation of charge and discharge cycle, which is the value converted at $20^{\circ}C$. By using the proposed algorithm, this paper propose the test device based on the Labview software. The simulation results show that it is a practical tool for the maintenance of lead-acid battery in the field of industry.

Development of the Protocol of the High-Visibility Smart Safety Vest Applying Optical Fiber and Energy Harvesting (광섬유와 압전 에너지 하베스팅을 적용한 고시인성 스마트 안전조끼의 개발)

  • Park, Soon-Ja;Jung, Jun-Young;Moon, Min-Jung
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.25-38
    • /
    • 2021
  • The aim of this study is to protect workers and pedestrians from accidents at night or bad weather by attaching optical fiber to existing safety clothing that is made only with fluorescent fabrics and retroreflective materials. A safety vest was designed and manufactured by applying optical fiber, and energy-harvesting technology was developed. The safety vest was designed to emit light using the automatic flashing of optical fibers attached to the film, and an energy harvester was manufactured and attached to drive the light emission of the optical fiber more continuously. As a result, first, the vest wearer' body was recognized from a distance through the optical fiber and retroreflection, which helped prevent accidents. Thus, this concept helps in saving lives by preventing accidents during night-time work on the roadside or activities of rescue crew and sports activities, or by quickly finding the point of an accident with a signal that changes the optical fiber light emission. Second, to use the wasted energy, a piezoelectric-element power generation system was developed and the piezoelectric-harvesting device was mounted. Potentially, energy was efficiently produced by activating the effective charging amount of the battery part and charging it auxiliary. In the existing safety vest, detecting the person wearing the vest is almost impossible in the absence of ambient light. However, in this study, the wearer could be found within 100 m by the light emission from the safety vest even with no ambient light. Therefore, in this study, we will help in preventing and reducing accidents by developing smart safety clothing using optical fiber and energy harvester attached to save lives.

Analysis of Micro-grid Operations Including PV Source and Li Battery (태양광 전원과 Li 배터리를 포함하는 마이크로 그리드의 운영특성 해석)

  • Kim, Deok Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4692-4697
    • /
    • 2014
  • A micro-grid including photovoltaic source and Li battery has been installed and operated for several years at the campus of USF and been used as a test bed. Photovoltaic power source has been strongly influenced by the location, weather and climate of the installed area. To compensate for the uncertainty of photovoltaic source's power output, a Li battery is connected directly to the photovoltaic source and supplies electric power to the grid. The Li battery is operated to supply power output to the grid according to the charging or discharging mode of the battery based on the average power output of the photovoltaic source, which is calculated from the monitored data for several years. The grid of the photovoltaic and Li battery system is operated as a severe loading condition and the operating characteristics of PV source and Li battery cells are analyzed in detail.

Discharged Maximum Current Density of Vanadium Redox Flow Battery with Increased Electrolyte Flow Rate (바나듐계 산화-환원 유동 전지의 최대 방전전류와 유량의 상관성에 대한 실험적 연구)

  • Kim, Jung Myoung;Park, Hee Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.777-784
    • /
    • 2016
  • All-vanadium redox flow batteries (VRFBs) are used as energy storage systems for multiple intermittent power sources. The performance of the VRFBs depends on the materials and operating conditions. Hence, performance characterization is of great importance in the development of the VRFBs. This paper proposes a method for determining the maximum current density based on stoichiometric ratios. A laboratory-scaled VRFB with a projected electrode area of $25cm^2$ is electrically charged when the state of the charge has begun from 0.6. The operating conditions, such as current density and volumetric flow rate are important in the test, and the maximum current density is influenced by the mass transfer coefficient. The results show that increasing the electrolyte flow rate from 5 mL/min to 60 mL/min enhances the maximum current density up to $520mA/cm^2$.

Design and Implementation of Dermatology $CO_2$ Laser System (피부과용 $CO_2$레이저시스템의 설계 및 구현)

  • Kim, Whi-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.2
    • /
    • pp.8-13
    • /
    • 2001
  • We demonstrate a pulsed CO$_2$laser with long pulse duration of millisecond order in the low pressure less than 30 Torr. A new power supply for our laser system switches the voltage of AC power line(60㎐) directly. The power supply doesn't need elements such as a rectified bridge, energy-storage capacitors. and a current-limiting resistor in the discharge circuit. In order to control the laser output power, the pulse repetition rate is adjusted up to 60㎐ and the firing angle of SCR gate is varied from 30˚ to 150˚. A ZCS(Zero Crossing Switch) circuit and a PIC one-chip microprocessor are used to control the gate signal of SCR precisely. The maximum laser output is 23W at the total pressure of 18 Torr, the pulse repetition rate of 60㎐, and SCR gate firing angle of 90˚. In addition, the obtained laser pulse width is approximately 3㎳(FWHM)

Potential Reduction and Energy Dispersion Due to Ionization Around the Submerged Ground Rod (수중에 잠긴 접지전극 주변에서의 이온화에 의한 전위저감 및 에너지방출)

  • Choi, Jong-Hyuk;Ahn, Sang-Duk;Yang, Soon-Man;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.92-99
    • /
    • 2009
  • Deeply-driven ground rod in the rainy season may contact with rainwater and ground water. When surge voltages are applied to the submerged ground rods, the ionization around the ground rods are occurred. Ionization in soil and/or water is affected in dynamic performance of ground rod systems. This work aims at studying the transient performance of ground rod system under impulse voltage using scale model in an electrolytic tank. The potential reduction and energy dispersion caused by ionization were treasured and quantitatively analyzed using the Matlab Program. As a result, the peak voltage at the terminal of ground rod was varied with water resistivity and charging voltage of Marx generator. The potential at the terminal of the ground rod was approximately reduced to a half of the applied voltage just below breakdown voltage. Also the energy more than half of the applied energy was dispersed through the ground rod due to ionization just below breakdown voltage.

Design of Spark Advanced Controller for Improvement in Power and Torque of CNG Bi-Fuel Vehicle (압축천연가스 겸용 차량의 출력 및 토크 향상을 위한 점화 진각 제어기 설계)

  • Park, Jin-Hyun;Kim, Sung-Hoon;Cho, Seung-Wan;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1641-1646
    • /
    • 2010
  • Recently, environmental concerns increased, CNG fuel research for the prevention against air pollution is actively. But, the problems of CNG fuel have less output and a shorter charging distance than gasoline. Especially, the causes of the torque and output reduction are the mixed fuel has a combustion timing loss in case of CNG fuel which has a smaller heating value per a unit volume and a slower flame propagation speed than gasoline. In this paper, we design the spark advanced controller in consideration of the spark timing loss. Through the experimental of chassis dynamometer, we show that maximum power and torque have improved compared to that of general CNG bi-fuel system.