• Title/Summary/Keyword: 충돌특성곡선

Search Result 20, Processing Time 0.029 seconds

Determination of Crash Pulse to Minimize Injuries of Occupants and Optimization of Crash Components Using Response Surface Method (승객 상해를 최소화하는 충돌특성곡선의 결정 및 반응표면법을 이용한 충돌 부품의 최적설계)

  • 홍을표;신문균;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.116-129
    • /
    • 2001
  • Traditional occupant analysis has been performed with a pre-determined crash puse which is produced from a test and the involved components are designed based on the analysis resuls. The method has limitations in that the design does not have much freedom. Howrver, if a good crash pulse is proposed, the body structure can be modified to generate the crash pulse. Therefore, it is assumed that the crash pulse can be changed to imptove the occupant crash performance. A preferable crash pulse is determined to minimize the occupant injuty. A constraint is established to keep the phenomena of physics valid. The response surface method(RSM) is adopted for the optimization process. An RSM in a commercial code is utilzed by interfacing with an in-house occupant analysis program called SAFE(Safety Analysis For occupant crash Enviroment). Design of involved components called is carried out through optimization with the RSM. The advantages of the RSM are investigated as opposed to other methods, and the tesults are compared. Also, the design under the new crach pulse is compared with that trom the pre-detetmined pulse.

  • PDF

The Estimation of Collision Speed at the Intersection using Simulation (시뮬레이션을 통한 교차로 충돌 속도 추정)

  • Han, Chang-Pyoung;Cheon, Jeong-Hwan;Choi, Hong Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.514-521
    • /
    • 2021
  • When calculating an intersection collision speed using a formula, it is very difficult to grasp the degree of deceleration of a vehicle after the collision unless there is road surface trace in the entire section where each vehicle moved from the point of collision to their final positions after the collision. A vehicle's motion trajectory shows an irregular curve after a collision due to the effects of inertia based on the driving characteristics of the vehicle, the eccentric force according to the collision site, and the collision speed. Therefore, it is very important to set the appropriate departure angle after a collision for accurate collision speed analysis. In this study, based on experimental collision data using a computer simulation (PC-Crash), the correlation between an appropriate vehicle departure angle and the post-collision speed was analyzed, and then, a regression analysis model was derived. Through this, we propose a method to calculate collision speed by applying only the vehicle departure angle in some types of collisions for traffic accidents at intersections.

Re-estimation of Settling Velocity Profile Equations for Muddy Cohesive Sediments in West Coasts (서해안 갯벌 점착성 퇴적물 침강속도 곡선식의 재검토)

  • Hwang K.-N.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.1
    • /
    • pp.3-10
    • /
    • 2002
  • Quantifying the settling velocities of fine-cohesive sediments is very essential in the study of ocean pollutions as well as sedimentations. Settling properties of fine-cohesive sediments are influenced largely by aggregation which occurs as a consequence of interparticle collision and cohesion of particles. Since the degree of cohesion of fine-cohesive sediments depends on physico-chemical properties such as grain size distribution, percentage of organic materials, and mineralogical compositions, and these physico-chemical properties varies regionally, the settling velocities of fine-cohesive sediments for a specific site should be determined through field or laboratory experiment. Recently, settling velocities of fine-cohesive sediments in Saemankeum coasts and Kunsan Estuary have been measured through laboratory experiments. Using these data, the previously proposed well-known settling velocity equations for fine-cohesive sediments are examined and a new equation is developed for better representation of the measured data in this study. The newly developed settling velocity equation is simpler in the form and easier in determining the related coefficients than the previous well-known equations.

  • PDF

Analysis of electrical Charactersitics by the effect of ambient temperature in D.C. low-pressure discharge (온도에 따른 D.C. 저압방전의 전기적 특성해석)

  • 김수길;이진우;지철근
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.13-16
    • /
    • 1990
  • 균일한 positive column의 상세한 이론이 충돌 단면적 곡선과 공진 방사 그리고 다단계 여기(multistage)와 이온화 과정을 고려하여 0.5에서 5mmHg 압력에서 수은과 희유가스(rare-gas)가 혼합되어 있는 D.C.형광 램프 방전에 대해 전개된다. 온도와 이온, 비여기원자, 여기원자의 밀도가 수치해석에 의하여 계산된다.

  • PDF

Design of a Steel Bar Breaking System in a Sled Test Facility (Sled Test용 Steel Bar Breaking System의 설계)

  • Cho, In-Yong;Lee, Hyung-Joo;Lee, Kwon-Hee;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.770-775
    • /
    • 2001
  • Steel bar breaking system is a component of a sled test system for automobile crashworthiness. It is a recent idea for the sled test. In a sled test, a crash pulse is given as a input made from a real test. The steel bar breaking system is designed to generate a certain crash pulse. Orthogonal arrays from design of experiments (DOE) are employed. The factors of the array are panel thickness and the number of steel bars, and the levels are candidate values of them. A simulation is utilized for the crash analysis. A commercial system called LS/DYNA3D is adopted. A test system is designed based on the results.

  • PDF

Effect of Operating Condition of Airblast Atomizer on Twin spray characteristics and interaction (공기충돌형 연료분사장치의 운용조건이 이중분무특성과 간섭효과에 미치는 영향)

  • Park, S.G.;Han, J.S.;Kim, Y.;Park, J.B.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.9-14
    • /
    • 1999
  • The effect of operating condition was studied experimently on the characteristics of twin sprays ejected from two airblast atomizers, within the range of the mass air-fuel ratio 1.36∼3.54. Water and nitrogen gas were used as test fluids for the experiments. Spray characteristics of liquid spray were measured with measurement of mass distribution and instantaneous image of the spray cone. Experimental results show that the maximum specify of the distribution were lowered but distributed over the larger area when the ROA ratio increased, Center of mass position did not change with increasing water mass flow, Increase of the nozzle distance has an small effect on mass distribution of interaction area but distributed over the larger area. It was also conformed that the effect of interaction near central point of collision decreased with the increase of the ROA ratio on interaction area from comparison using superposition method

  • PDF

Research about Size Effect of Solid Particles on Erosion Resistance of Aluminum Alloy and Infrared Windows (충돌 입자의 크기에 따른 알루미늄 합금과 적외선창의 입자침식 저항성 연구)

  • Hong, Yun Ky;Moon, Kwan Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1027-1034
    • /
    • 2016
  • In this research, experimental study about size effect of solid particles on erosion resistance is presented. A high-density polyethylene particle with a mm-sized diameter is accelerated using a two-stage light gas gun up to Mach number of approximately 3.0. An accelerated particle impacts aluminum alloy such as Al1050 and Al6061 T6, and infrared windows such as ZnS and sapphire specimens. For the aluminum alloy, craters that form on the surface of the specimens are measured to characterize the erosion resistance of the material. For the infrared windows, repetitive tests are conducted until a linear or circumferential crack is found to create damage threshold curves that define a material's erosive resistance. From the comparison of test data for various sizes of high-density polyethylene particles, it is found that erosion resistance of material is linearly dependent on the size of particles.

Effect of the Main Structure Stiffness on the Frontal Collision Behavior (차체 추요 부재의 강성이 정면 충돌 거동에 미치는 영향)

  • Kim, Chon-Wook;Han, Byoung-Kee;Kim, Jong-Chan;Jung, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.234-241
    • /
    • 2002
  • In this study, the car crash analysis that simulates the crushing behavior of car forestructure during a frontal impact is carried out. The analysis model for front impact of a car consists of the lumped mass and the spring model. The characteristics value of masses and springs is obtained from the static analysis of a target car. The deceleration-time curve obtained from the simulation are compared with NCAP test data from the NHTSA. They show a good agreement with frontal crash test data. The deceleration-time curve of passenger compartment is classified into 3 stages; beginning stage, middle stage, and last stage. And the behavior of masses at each stage is explained. The effect of stiffness variation on deceleration of passenger compartment is resolved. The maximum loaded peak-time of torque box and dash is the main factor to control the passenger compartment's maximum deceleration.

A Preliminary Study on Intersection Geometric Designs Considering Safety of Crossing Bicycle - Focusing on Curve Radius of Pavement Edge at Intersection (횡단자전거의 안전성을 고려한 교차로 기하구조에 관한 기초연구 - 교차로 가각부 곡선반경을 중심으로)

  • Hwang, Jung-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.637-643
    • /
    • 2014
  • Recently there have been an increasing amount of bicycle accidents along with the increased usage of bicycles. Bicycle accidents occur frequently by perpendicular collision at the inner intersection. Bicycle traffic is especially concentrated in residential areas and around schools which results in the vulnerability of cyclists. This paper is to inform the potential risks of collisions between bicycles and cars turning right at the intersections using simulation analysis which focuses on the pavement edge of intersection geometric designs factor and checks on the drivers behavior. The result of the analysis shows that as the curve radius of pavement edge at the intersection becomes larger and the more attention drivers are paying to the rear by turning their heads to the right, the potential risk of collisions between bicycles and cars turning right will decrease.

Modeling Method for the Force and Deformation Curve of Energy Absorbing Structures to Consider Initial Collapse Behaviour in Train Crash (열차 충돌에너지 흡수구조의 초기붕괴특성을 고려하기 위한 하중-변형 곡선 모델링 방법)

  • Kim, Joon-Wo;Koo, Jeong-Seo;Lim, Jong-Soon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.116-126
    • /
    • 2010
  • The Korean rolling stock safety regulation stipulates that the collision deceleration of a car body should be maintained under average 5g and maximum 7.5g during train collisions. One-dimensional dynamic model of a full rake train, which is made up of nonlinear springs/bars-dampers-masses, is often used to estimate the collision decelerations of car bodies in a basic design stage. By the way, the previous studies have often used some average force-deformation curve for energy absorbing structures in rolling stock. Through this study, we intended to analyse how much the collision deceleration levels are influenced by the initial peak force modeling in the one-dimensional force-deformation curve. The numerical results of the one-dimensional dynamic model for the Korean High-Speed Train show that the initial peak force modeling gives significant effect on the collision deceleration levels. Therefore the peak force modeling of the force-deformation curve should be considered in one-dimensional dynamic model of a full rake train to evaluate the article 16 of the domestic rolling stock safety regulations.