• Title/Summary/Keyword: 충격 시험 장비

Search Result 81, Processing Time 0.027 seconds

A Study for Application of the Light Falling Weight lest on Subbase and Subgrade (노상 및 보조기층의 소형충격재하시험 활용방안 연구)

  • Choi, Jun-Seong;Kim, Jong-Min;Han, Jin-Seok;Kim, Bu-Il
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.85-98
    • /
    • 2009
  • The in-situ Compaction test using sand cone (RC) and Plate Bearing Capacity Test (PBT) has been widely used for evaluating the subgrade and subbase condition on the pavement system. However, because the in-situ RC and PBT test are expensive and take plenties of time for operation, these are very difficult to figure out the in-situ characteristics of subgrade and subbase strength in detail. Therefore, for faster and economical operation, this study is to compare the Light Falling Weight Tests and propose the LFWD test as the in-situ Compaction test. This study suggests the relationship between in-situ RC value, $K_{30}$, $M_R$ and $E_{LFWD}$ of the subgrade and subbase materials in Korea using the laboratory and in-situ testing.

  • PDF

Design and Performance Test of Rubber Engine Mount for Isolation Large Structures (방진고무를 이용한 대용량 엔진마운트의 제작 및 성능시험)

  • 유춘화;김충식;박상규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.93-97
    • /
    • 1993
  • 방진고무는 진동을 방지하여 다른 구조물의 진동전달 차단은 물론, 장비의 수명연장 및 효율을 증가시키기 위한 목적으로 사용되는데 이러한 방진고무 의 동적특성을 일반화하는 것은 어렵기 때문에 방진고무 시편의 동특성 해 석시험 결과치를 기준으로 원하는 성능에 부합하도록 방진고무의 재질을 선 정하고 사양에 의한 엔진마운트를 설계 제작하여야 한다. 이번에 제작한 UEM 엔진마운트는 해상용, 육상용 설비에 적용 가능하며, 특히 해상용에 적 용하고 외부 환경에 의한 부식으로부터 방진고무 및 기자재를 보호하기 위 하여 하우징을 특수재질로 제작하였고, 수직.수평력을 고려하여 큰 하중에 견딜 수 있도록 원추형 형상설계와 강성을 보강하였다. 특히, 원추형 형상으 로 제작하여 하중을 일정하게 분산시키고, 사용 가능한 선형영역을 확대 시 켰으며, Buffer(Steel Bar)를 이용하여 높은 파고 등에 의한 외부 충격량에 따른 큰 변위의 발생으로부터 설비를 보호할 수 있다. 본 논문에서는 물리적 특성이 같은 방진고무를 사용하고, 적층 수만 다르도록 두가지 모델 UEM-155와 UEM-255를 설계 제작하여 수직.수평방향의 정적시험, 동적시 험, 현장 장착시험 등을 수행함으로써 기업에서 요구한 사양에 적합한가를 고찰하였다.

  • PDF

A Study on Fatigue Assessment of the Crane Post due to Vibration during the Emergency Stop (충격하중에 의한 Jib Crane Post의 피로 수명 평가)

  • Kim, Kuk-Su;Kim, Nho-Seong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.633-637
    • /
    • 2011
  • The tall and slender main crane is generally installed on the upper deck to load and unload the equipment or something heavy in the drilling rig or the ship. So the natural frequency of the crane equipment is very low, therefore, there is some possibility of excessive vibration at the emergency state due to sudden stop during the crane operation. This study describes a fatigue assessment due to heavy vibration during brake test of sudden stop because it is necessary the safety of crane is estimated against the heavy vibration. In order to find out the applied force, the vibration measurement and analysis have been performed.

  • PDF

Design of Compliant Joint for Pyro-shock Isolation (연소충격 격리용 완화부품 설계)

  • Han, Houkseop;Lim, Daehyun;Kim, Jinyong;Lee, Young-won;Park, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • The purpose of the pyro-shock compliant joint is to isolated vibration using the compliant material in order to prevent the shock generated by pyro propulsion at the electronics equipment. The performance of the pyro-shock compliant joint can be determined by measuring bending natural frequency and transmissibility. In this study, we established the design requirements based on bending natural frequency and transmissibility results of the reference model. We developed a compliant material with sufficient shock compliant properties and a pyro-shock compliant joint for the new rocket. This results can be used to develop a pyro-shock compliant joint for any rocket using the compliant material and performance measurement.

Development of Laminated Blade Based Shock Absorber Using Viscoelastic Adhesive Tape (점탄성 테이프를 적용한 적층형 블레이드 기반 충격저감장치)

  • Jae-Seop Choi;Yeon-Hyeok Park;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.86-93
    • /
    • 2023
  • Pyrotechnic separation devices have been widely used as holding and release mechanism for deployable appendage. However, pyro-shock can cause temporal or permanent damage on shock sensitive components such as electronics, mechanism, and brittle components. This study proposed a low-stiffness blade based passive shock absorber using a multi-layered stiffener laminated with viscoelastic acrylic tapes for reducing transmitted pyro-shock upon explosion of pyrotechnic separation devices. The multi-layered structure with viscoelastic tape has high-damping characteristics to effectively secure structural integrity of low-stiffness blades under the launch environment. The design effectiveness was verified through a shock test by dropping a pendulum. The structural integrity of the shock absorber under a launch environment was evaluated through structural analysis under load conditions with a deployable payload.

A Study on the Shock Resistance against Underwater Explosion of Ship-born Vertical Launch Type Air-vehicle by Using the Modeling and Simulation (모델링 및 시뮬레이션 기반의 함정용 수직발사형 발사체의 수중폭발 충격에 대한 내충격성 확보 방안 연구)

  • Seungjin Lee;Jeongil Kwon;Kyeongsik You;Jinyong Park
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • This study examines the response when the shock by underwater explosion is transmitted to a vertical launch air-vehicle mounted on a ship using modeling and simulation, and is about a plan to increase method shock resistance to protect the air vehicle. In order to obtain an accurate mathematical model, a dynamic characteristic test was performed on similar equipment, and through this, the mathematical model could be supplemented. And, using the supplemented mathematical model, the air vehicle simulated the shock response by the underwater explosion specified in the BV043 standard. As a result of the first simulation, it was confirmed that air vehicle could not withstand shock, and air vehicle protection method using a ring spring type shock absorber was studied. In addition to the basic shape of abosber, it was confirmed that the ring spring absober can be used to increase the impact resistance of a shipborn vertical launch vehicle by performing simulations for each case by changing deseign varables.

Hazards of decomposition and explosion for Tert-butylperoxymaleate (터셔리부틸퍼옥시말레이트의 분해 및 폭발 위험성)

  • Lee, Jung-Suk;Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.1
    • /
    • pp.40-47
    • /
    • 2021
  • In this study, hazards of decomposition and explosion for tert-butylperoxymaleate(TBPM), an organic peroxide, were evaluated by using various equipment to determine the cause of a fire explosion accident. As a result of DSC analysis, the instantaneous power density of TBPM was 26,401 kW/ml, and the NFPA reactive index(Nr) was classified as 4. And the positive value of EP(explosive propagation) and SS(shock sensitivity) showed that the TBPM had a potential hazard of explosion. From the experimental results, the shock sensitivity and friction sensitivity was rated as class 4 and 5, respectively. In the pressure vessel test, TBPM was ranked USA-PVT No.4 and evaluated as a self-reactive substance. In the combustion rate test, TBPM had the combustion rate of 167 mm/sec and was evaluated as the flammable solid classification 2 in GHS.

Acoustic outputs from clinical extracorporeal shock wave lithotripsy devices (임상에서 사용중인 체외충격파쇄석기의 음향 출력 분포)

  • Jong Min Kim;Oh Bin Kwon;Jin Sik Cho;Sung Joung Jeon;Ki Il Nam;Sung Yong Cho;Min Joo Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.469-490
    • /
    • 2023
  • Survey was carried out on the acoustic outputs from 12 shock wave fields produced by the 10 extracorporeal shock wave lithotriptors whose technical documents are available, among the 33 devices approved by the Ministry of Food & Drug Safety (MFDS).The results show that the acoustic outputs (P+, P-, efd, and E), critical to the therapeutic efficacy and the patient safety, are largely different between the devices. The maximum values of P+, P-, efd, and E vary up to 2.08, 3.72, 3.89, and 15.98 times, respectively. The acoustic output parameters are not thoroughly provided in the technical documents, and some of data (eg. efd) are suspected to be abnormal outside usual ranges. The large device to device differences in the shock wave outputs are likely to undermine equivalence between the ESWL devices approved for the same indication. To verify the reliability of the data in the technical documents of the approved devices and to confirm if the acoustic outputs from the devices in clinical use are the same as those in their technical documents, an authorized test laboratory should be available. A postapproval monitoring led by the regulatory agency is suggested to maintain the acoustic outputs from the ESWL devices that suffer from degrading in performance due to aging.

High-Altitude Environment Simulation of Space Launch Vehicle in a Ground-Test Facility (지상시험장비를 통한 우주발사체 고공환경모사 기법 연구)

  • Lee, Sungmin;Oh, Bum-Seok;Kim, YoungJun;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.914-921
    • /
    • 2017
  • The experimental research on a high-altitude environment simulation of space launch vehicle is important for securing independent technologies with launching space vehicles and completing missions. This study selected an altitude of 65 km for the experiment environment where it exceeded Mach number of 6 after the launch of Korean Space Launch Vehicle(KSLV-II). Shock tunnel was used to replicate the flight condition. After flow establishment, in order to confirm aerodynamic characteristics and normal and oblique shockwaves, the flow verification was carried out by measuring stagnation pressure and heat flux of a forebody model, and shockwave stand-off distance of a hemispherical model. In addition, a shock-free technique to recover free-stream condition has been developed and verified. From the results of the three verification tests, it was confirmed that the flow was replicated with the error of about ${\pm}3%$. The error between the slope angle of inclined shockwave of the scaled down transition section model using the shock-free shape and the slope angle of the horizontal plate model, and between the theoretical and the experimental value of the static pressure of the model were confirmed to be 2% and 1%, respectively. As a result, the efficiency of the shockwave cancellation technique has been verified.

Development of a Structure for Lunar Lander Demonstrator (달착륙선 지상시험모델의 구조체 개발)

  • Son, Taek-Joon;Na, Kyung-Su;Lim, Jae Hyuk;Kim, Kyung-Won;Hwang, Do-Soon
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.213-220
    • /
    • 2013
  • Korean Lunar Explorer is planned to be launched in the 2020s according to national space development strategy. The Lunar Explorer will be developed as two unmanned light weight models: a lunar orbiter and a lunar lander. The Lunar Explorer's structure should be designed to have light weight due to constraints from launcher as well as to provide structural safety against launch load, in-orbit condition and landing condition and to serve accommodation space for mission equipment. Core technology related to structural development of lunar explorer should be developed in advance. Especially, for lunar lander, technology for developing landing gear which enables lander to land safely on lunar surface is required essentially. This paper deals with structural development of lunar lander ground test model including design, manufacturing and test.