DOI QR코드

DOI QR Code

임상에서 사용중인 체외충격파쇄석기의 음향 출력 분포

Acoustic outputs from clinical extracorporeal shock wave lithotripsy devices

  • 김종민 (제주대학교 의공학협동과정) ;
  • 권오빈 (제주대학교 의공학협동과정) ;
  • 조진식 (제주대학교 의공학협동과정) ;
  • 전성중 (제주대학교 의공학협동과정) ;
  • 남기일 ((재)한국기계전기전자시험연구원) ;
  • 조성용 (서울대학교병원) ;
  • 최민주 (제주대학교 의공학협동과정)
  • 투고 : 2023.09.13
  • 심사 : 2023.09.18
  • 발행 : 2023.09.30

초록

식약처에서 허가된 33개 체외 충격파 쇄석기 중 기술 문서가 공개된 10개(12개의 충격파 음장)에 대해 치료 효과 및 안전을 좌우하는 충격파의 음향 출력 분포를 조사했다. 조사 결과 핵심 충격파 음향 출력(P+, P-, efd, E)의 최대값은 제품별로(각각 최대 2.08배, 3.72배, 3.89배, 15.98배) 크게 차이가 나고 있다. 음향 출력 변수들의 값은 기술 문서에 충실하게 포함되지 않고 있으며, 일부 데이터는(예. efd) 통상적인 범위를 벗어나는 비정상적인 값을 가지는 것으로 나타났다. 제품 별로 큰 차이를 보이는 충격파 음향 출력은 동일한 적응증으로 허가 받은 ESWL 장비의 동등성을 훼손할 가능성이 높다는 것을 시사한다. 허가된 Extracorporeal Shock Wave Lithotripsy(ESWL) 제품의 기술 문서에 기재된 자료의 신뢰성을 검증하고, 임상에서 사용되는 제품의 성능이 기술 문서와 동일한지 확인하기 위해 공인된 시험 검사 기관의 확보가 필요하며, 노화로 인해 충격파 출력이 저하되는 ESWL 제품의 성능 유지 및 관리를 위한 규제 기관 주도의 사후 관리가 제안된다.

Survey was carried out on the acoustic outputs from 12 shock wave fields produced by the 10 extracorporeal shock wave lithotriptors whose technical documents are available, among the 33 devices approved by the Ministry of Food & Drug Safety (MFDS).The results show that the acoustic outputs (P+, P-, efd, and E), critical to the therapeutic efficacy and the patient safety, are largely different between the devices. The maximum values of P+, P-, efd, and E vary up to 2.08, 3.72, 3.89, and 15.98 times, respectively. The acoustic output parameters are not thoroughly provided in the technical documents, and some of data (eg. efd) are suspected to be abnormal outside usual ranges. The large device to device differences in the shock wave outputs are likely to undermine equivalence between the ESWL devices approved for the same indication. To verify the reliability of the data in the technical documents of the approved devices and to confirm if the acoustic outputs from the devices in clinical use are the same as those in their technical documents, an authorized test laboratory should be available. A postapproval monitoring led by the regulatory agency is suggested to maintain the acoustic outputs from the ESWL devices that suffer from degrading in performance due to aging.

키워드

과제정보

본 연구는 정부(과학기술정보통신부, 산업통상자원부, 보건복지부, 식품의약품안전처)의 재원으로 범부처 전주기 의료기기 연구개발사업단(과제고유번호: RS-2020-KD000010)(202011B04, KMDF_PR_20200901_0010)과 중소벤처기업부의 기술개발사업[S3283078]의 지원을 받아 수행된 연구임.

참고문헌

  1. C. G. Chaussy, "The History of Shockwave Lithotripsy," in Handbook of The History of Technologic Advancements in Urology, edited by S. Patel, M. Moran, S. Nakada (Springer, Cham, 2018). 
  2. Department of Health and Human Services, "Guidance for the content of premarket notifications (510(k)s) for extracorporeal shock wave lithotripters Indicated for the fragmentation of kidney and ureteral calculi, federal register," FDA Guidance, 2008. 
  3. C. Chaussy, E. Schmiedt, B. Jocham, W. Brendel, B. Forssmann, and V. Walther, "First clinical experience with extracorporeally induced destruction of kidney stones by shock waves," J. Urology. 127, 417-420 (1982). 
  4. M. J. Choi, J. Y. Lee, and E. J. Park, "First report on the persist time of the free radical produced by shock wave pulses employed in clinical ESWL," Ultrason. Sonochem. 83, 105927 (2022). 
  5. IEC 60601-2-36, Medical Electrical Equipment - Part 2-36: Particular Requirements for The Basic Safety and Essential Performance of Equipment for Extracorporeally Induced Lithotripsy, Edition 2.0, 2014. 
  6. IEC 61846, Ultrasonics - Pressure pulse LithoTripters - Characteristics of Fields, First Ed., 1998. 
  7. Ministry of Food and Drug Safety, "Safety and performance evaluation test method guide for in extracorporeal shock wave lithotripte," Guide-0784-01, 2017. 
  8. C. Perez, H. Chen, T. J. Matula, M. Karzova, and V. A. Khokhlova, "Acoustic field characterization of the Duolith: Measurements and modeling of a clinical shock wave therapy device," J. Acoust. Soc. Am. 134, 1663-1674 (2013). 
  9. Ministry of Food and Drug Safety, "Guidelines for preparing technical documents for in extracorporeal shock wave therapy," Guide-0580-01, 2015. 
  10. M. J. Choi, S. J. Jeon, O. B. Kwon, M. Y. Lee, J. S. Cho, H. S. Kim, and E. H. Maeng, "Inspection on the acoustic output of the focused extracorporeal focused shock wave therapeutic devices approved by MFDS" (in Korean), J. Acoust. Soc. Kr. 39, 303-317 (2020). 
  11. S. J. Jeon, M. Y. Lee, O. B. Kwon, J. M. Kim, and M. J. Choi. "Reliability and utility of a Dry Test Bench for testing the acoustic output from a ballistic shock wave therapeutic device" (in Korean), J. Acoust. Soc. Kr. 41, 589-600 (2022). 
  12. J. S. Cho, O. B. Kwon, S. J. Jeon, M. Y. Lee, J. M. Kim, M. J. Choi. "Acoustic outputs from clinical ballistic extracorporeal shock wave therapeutic devices" (in Korean), J. Acoust. Soc. Kr. 41, 570-588 (2022). 
  13. A. J. Coleman, M. J. Choi, J. E. Saunders, and T. G. Leighton, "Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter," Ultrasound Med. Biol. 18, 267-281 (1992). 
  14. M. J. Choi, S. C. Cho, D. G. Paeng, and K. I. Lee, "Extracorporeal shock wave therapy: Its acoustical aspects," J. Acoust. Soc. Kr. 29, 119-130 (2010). 
  15. M. J. Choi, G. Kang, and J. S. Huh, "Geometrical characterization of the cavitation bubble clouds produced by a clinical shock wave device," Biomed. Eng. Lett. 7, 143-151 (2017). 
  16. S. Y. Cho, O. B. Kwon, S. C. Kim, H. Song, K. Kim, and M. J. Choi, "Understanding cavitation-related mechanism of therapeutic ultrasound in the field of urology: Part I of therapeutic ultrasound in urology," Investig. Clin. Urol. 63, 385-393 (2022). 
  17. M. J. Choi and O. Kwon. "Temporal and spectral characteristics of the impulsive waves produced by a clinical ballistic shock wave therapy device," Ultrasonics, 110, 106238 (2021). 
  18. M. K. Jeong and M. J. Choi, "A novel approach for the detection of every significant collapsing bubble in passive cavitation imaging," IEEE Trans. Ultrason. Ferroelect. Freq. Control, 69, 1288-1300 (2022). 
  19. S. R. Park, K. W. Jang, S.-H. Park, H. S. Cho, C. Z. Jin, M. J. Choi, S. L. Chung, and B. -H. Min, "The effect of sonication on simulated osteoarthritis. Part I: effects of 1 MHz ultrasound on uptake of hyaluronan into the rabbit synovium," Ultrasound Med. Biol. 31, 1551-1558 (2005). 
  20. I. S. Song, B. I. Choi, J. K. Han, H. K. Lee, Y. H. Park, Y. B. Yoon, J. W. Kim, and M. C. Han, "Piezoelectric lithotripsy of gallbladder stones: fragmentation rate vs stone size, number and character" (in Korean), J. Korean Radiol. Soc. 27, 813-816 (1991). 
  21. A. J. Coleman and J. E. Saunders. "A survey of the acoustic output of commercial extracorporeal shock wave lithotripters," Ultrasound Med. Biol. 15, 213-227 (1989).  https://doi.org/10.1016/0301-5629(89)90066-5
  22. M. J. Choi, J. S. Huh, and G. Kang. "Apparatus for testing the performance of shockwave generator," Jeju National University Industry-Academic Cooperation Foundation, HNT MEDICAL CO. LTD., Patent, 2018. 
  23. Urology Care Foundation, https://www.urologyhealth.org/urology-a-z/k/kidney-stones (Last viewed August 30, 2023). 
  24. D. Heimbach, R. Munver, P. Zhong, J. Jacobs, A. Hesse, S. C. Muller, and G. M. Preminger. "Acoustic and mechanical properties of artificial stones in comparison to natural kidney stones," J. Urol. 164, 537-544 (2000). 
  25. S. R. Guntur, S. C. Kim, and M. J. Choi. "A cost-effective reusable tissue mimicking phantom for high intensity focused ultrasonic liver surgery," Bioengineering, 9, 786 (2022). 
  26. M. -T. Do, T. H. Ly, M. J. Choi, and S. Y. Cho, "Clinical application of the therapeutic ultrasound in urologic disease: Part II of the therapeutic ultrasound in urology," Investig. Clin. Urol. 63, 394-406 (2021). 
  27. F. A. Duck, Physical Properties of Tissues: A Comprehensive Reference Book (Academic press, London, 2013), pp. 73-124.