• Title/Summary/Keyword: 충격 소음원

Search Result 106, Processing Time 0.024 seconds

Source localization of impact noise on an indoor unit of air-conditioner (에어컨 실내기에서 발생하는 충격 소음원의 위치 추정)

  • 최영철;김양한;이종구;김구영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.324-329
    • /
    • 2003
  • An air-conditioner has various noise sources such as cooling fan noise, pumping noise, flow noise and impact noise. Among these, impact noise is the most unpleasant source. This is because the noise is produced in indoor unit of air-conditioner. To control the noise source effectively, first we must identify the noise sources. When we identify impact noise source, the measurement have to be carried out simultaneously. So we use beamforming method that requires less measurement points than intensity method and acoustic holography. The objective of this paper is to estimate the location of impact source. This objective can be achieved by using minimum variance cepstrum that is able to detect impulse embedded in noise. In this study, modified beamforming method based on cepstrum domain is proposed. Then this method applied to air-conditioner noise sources which produce impact noise.

  • PDF

Verification of Effectiveness of the Standard Floor Impact Source by Comparing with Living Impact Sources (실생활 충격소음을 통한 표준 바닥충격원의 실효성 검증)

  • Park, Hyeon Ku;Kim, Kyeong Mo;Kim, Sun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.12
    • /
    • pp.1117-1126
    • /
    • 2013
  • The standard impact sources, standardized to rate the sound insulation performance of floor structure, should simulate well the real floor impact sources, which is very important to grade the floor structure then to establish counter plan to improve the performance of floor. Recently the tire, the standard heavyweight impact source, has been discussed that the impact force is too big to represent the real impact force. And researches have been carried on the applicability as a substitute or a supplementary. In addition, tapping machine, the standard lightweight impact source, is also questionable if it is representative of real lightweight impact source. This study aims to examine the similarity of standard impact sources with living impact sources, comparing the physical characteristics such as impact force, frequency contents and sound level. The result showed that the physical characteristics of standard impact sounds were somewhat different with that of living impact sounds, and the standard sources couldn't be verified from this result. Later subjective evaluation should be followed to compare how the physical differences make relationship with the subjective differences.

Development of a Laboratory Test Device for the Performance Evaluation of Light-weight Impact Sound (경량충격음 성능 평가를 위한 실험실용 시험장치 개발)

  • 양수영;홍병국;송화영;김범수;이동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.505-508
    • /
    • 2004
  • 단열완충재 제품간의 경량충원 저감성능 평가를 객관적이고 신속하게 판별하기 위하여 실험실용 시험장치를 개발하였다. EVA계열 및 EPPㆍEPS계열의 단열완충재들에 대한 경량충격원 시험에서 제품간의 성능비교가 가능하였으며, 동탄성계수 및 손실계수 측정과 병행함으로써 제품들간의 우열성을 보다 정밀하게 평가할 수 있었다.

  • PDF

Factors affecting recognition of successive impulsive noise (연속성 충격소음의 인지에 관여하는 영향인자)

  • Lee, Jae-Won;Shin, Sung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.202-207
    • /
    • 2016
  • Most of noises from cars or home appliances accompany successive impulsive noise due to repeated operation. A human auditory system is able to perceive the successive impulsive noise as either a set of independent noise or amplitude modulated noise according to its occurrence period. This study is to identify main influence factors on understanding of impulsive characteristics and find most appropriate sound quality metrics to express the successive impulsive noise. To do this, the successive impulsive noises were designed and utilized to perform a listening test for identifying conditions where successive impulsive noise can be recognized to have impulsive characteristics. These results were analyzed with sound quality metrics such as loudness, fluctuation strength, and roughness in order to compare the subjective results with the objective results. Consequently, the results revealed that the successive impulsive noise exhibits impulsive characteristics when its occurrence frequency is less than 50 Hz. It was also observed that roughness and fluctuation strength results are not applicable to express the successive impulsive noise because they heavily depend on the amplitude modulation characteristics. On the other hand, loudness results are considered to be useful as an evaluation factor of the successive impulsive noise through the use of loudness limen because it does not depend on the amplitude modulation characteristics.