바닥충격음 완충재 재질 및 충격원에 따른 중량충격음 특성

Effect of Resilient Material Type and Impact Source on Heavy-weight Impact Sound in Apartment Building

류종과 + · 정근형** · 이종인* · 김현배*

Jongkwan Rvu, Guenhyeong Jeog, Jongin Lee and Hyunbae Kim

1. 서 론

공동주택의 바닥충격음 차단성능은 완충재의 물성 중 동탄성계수와 상관성이 있는 것으로 밝혀 졌으 나1),2) 다양한 건축특성(구조, 면적, 바닥 구속조건 등) 또한 그 성능을 결정짓는 중요한 요소임을 감안 하면, 동탄성계수가 유일한 결정요소라고는 할 수 없을 것이다. 따라서, 완충재의 성능을 해당 현장에 서의 시험평가를 통해 검증하는 절차가 필요하며 이는 실제 현장에서의 바닥충격음 차단성능을 확보 하는 합리적인 방안이라 사료된다.

한편, 바닥충격음을 저감하기 위한 현실적인 방법으 로 EPS(Expanded Poly-Styrene) 또는 EVA (Ethylene Vinyl Acetate) 계열 완충재를 활용한 표 준바닥구조를 사용하고 있다. 두 종류의 완충재는 잔 류변형(단기, 장기), 단열성능, 시간에 따른 경화 등에 서 다소 차이가 있으나 바닥충격음 차단성능(단일평 가지수)은 유사한 수준인 것으로 밝혀지고 있다. 다 만, 충격음레벨의 주파수 특성은 다소 차이가 있어 청감적인 저감효과 및 완충재의 기술개발 방향 설정 을 위해서는 이에 대한 체계적인 조사가 필요로 한다. 본 연구에서는 두 종류(EPS, EVA)의 완충재를 대 상으로 공동주택에서의 시험시공 및 현장측정을 통 해 중량 바닥충격음 차단성능의 주파수특성을 비교 조사 하였다.

2. 시험시공 및 현장측정

본 연구에서는 표 1과 같이 EPS와 EVA계열 완 충재를 3개의 현장에 시험시공을 실시하였으며 각

E-mail: jk-ryu@poscoenc.com

Tel: 032-200-2227, Fax: 032-200-2254

Table 1 완충재 두께 별 재질

현장	면적(m²)	완충재 종류	두께(mm)
А	84	EPS 3종, EVA 2종	20
В	110	EPS 4종	30
С	84	EPS 1종, EVA 2종	30

현장을 대상으로 중량바닥충격음 측정을 실시하였다. 현장측정은 맨슬라브 상태(1차)와 완충재 및 마감층 인 시공된 상태(2차) 모두 2차에 걸쳐 중량충격원인 뱅머신(Bang machine)과 고무공(Rubber ball)을 활 용하여 바닥충격음레벨 측정을 실시하였다.

각 현장의 바닥구성은 콘크리트 슬래브 210 mm+ 완충재 20 (30) mm+ 경량기포콘크리트 50 (40)mm + 마감모르타르 40 mm으로 이루워 졌고 건축구조는 혼합식(벽식+무량판) 구조이었다.

3. 측정 결과

3.1 바닥충격음 저감레벨

완충재의 바닥충격음 저감성능은 맨슬라브 상태의 바닥충격음 레벨에서 완충재 시공 후 상태의 바닥충 격음 레벨을 뺀 차이값(삽입손실 $\Delta L = L_{\text{Higher}} - L_{\text{Nighal}}$) 을 대상으로 조사되었다.

그림 1은 완충재의 중량충격음레벨 삽입손실을 나타내 고 있다. 뱅머신의 경우 EPS계열 완충재는 63Hz 대역 에서 1개의 완충재를 제외하고 1~4 dB의 저감효과를 나타냈으며, 125 Hz 이상 대역에서는 약 3~15 dB의 저 감레벨을 나타내었다. EVA계열 완충재는 63 Hz 대역과 250 Hz, 500 Hz 대역에서 약 3~10 dB의 저감효과를 나타낸 반면에, 125 Hz 대역에서는 저감량이 미미하거 나 오히려 충격음 레벨이 증폭하는 결과를 나타냈다.

고무공의 경우, EPS계열 완충재는 63Hz 대역에서 -2~6 dB의 저감량을 나타냈으며 125 Hz 이상 대역에서 는 약 5~20 dB의 큰 저감효과를 나타내었다. EVA계열 완충재는 뱅머신과 유사하게 63 Hz 대역과 250 Hz, 500 Hz 대역에서 약 3~15 dB의 저감효과를 나타낸 반면에,

[†] 교신저자; (주)포스코건설

^{* (}주)포스코거섴

^{** (}주)포스코건설 /인천대학교 도시건축학부

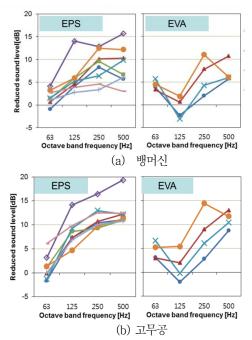


Figure 1 완충재시공에 따른 충격음레벨 삽입손실

125 Hz 대역에서는 저감량이 미미하거나 오히려 충격음 레벨이 증폭되는 결과를 나타내었다.

3.2 재질별 바닥충격음 저감레벨

그림 2는 완충재 시공에 따른 완충재 재질별 충격음레벨의 삽입손실을 나타내고 있다. 그림 2에서 각 데이터는 각 완충재별 모든 시험대상 완충재 측정치의 평균값을 나타내고 있다. 먼저 뱅머신의 경우, EPS계열 완충재가 63 Hz 대역에서 EVA계열 완충재 보다 약 3 dB의저감효과가 작았으나, 반대로 125 Hz 이상대역에서는 EPS계열이 EVA계열보다 약 2~5 dB의 저감효과가 더큰 것으로 나타났다. 고무공의 경우, 뱅머신의 결과와 동일한 결과가 나타났으며 125 Hz 이상대역에서 EPS계열이 EVA계열보다 약 2~8 dB 더 저감효과가 큰 것으로 나타났다.

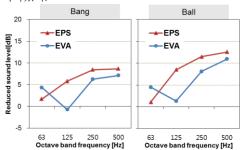


Figure 2 완충재시공에 따른 충격음레벨 삽입손실 (재질별 비교, 평균치)

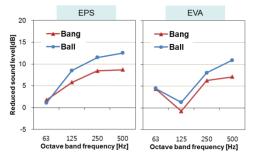


Figure 3 완충재시공에 따른 충격음레벨 삽입손실 (충격원별 비교, 평균치)

3.3 중량충격원별 바닥충격음 저감레벨

그림 3은 중량충격원별(뱅머신과 고무공) 완충재 시공에 따른 충격음레벨의 삽입손실을 나타내고 있다. 그림 3에서 각 데이터는 각 충격원별 완충재의 모든 측정치의 평균값을 나타내고 있다. 먼저 EPS계열 완충재의 경우, 63 Hz 대역에서 충격원별 저감레벨은 유사하였으나, 125 Hz 이상대역에서는 고무공이 뱅머신보다 약 3~4 dB의 큰 저감레벨를 나타냈다. EVA계열 완충재의 경우도 EPS계열 완충재와 동일한 결과가 나타났으며 125 Hz 이상대역에서 고무공이 뱅머신 보다 약 2~5 dB 큰 저감레벨을 나타냈다.

4. 결 론

본 연구에서는 두 종류(EPS, EVA)의 완충재를 대상으로 공동주택에서의 시험시공 및 현장측정을 통해 완충재시공 후 중량충격음 저감레벨을 비교 조사 하였다.

완충재 재질별 중량충격음 저감레벨의 주파수특성을 조사한 결과, 63Hz 대역에서는 EVA계열 완충재가 EPS 계열 완충재 보다 약 3 dB 큰 저감효과를 나타낸 반면, 125 Hz 이상 대역에서는 EPS계열 완충재가 EVA계열 완충재 보다 약 2~8 dB 큰 저감효과를 나타내었다. 특히, 125 Hz 대역에서는 EPS계열이 EVA계열보다 약 5~8 dB의 저감효과가 더 큰 것으로 나타났다.

충격원별 중량충격음 저감레벨의 주파수특성은 63 Hz 대역에서 충격원별 저감레벨은 유사하였으나, 125 Hz 이상대역에서는 고무공이 뱅머신 보다 약 2~5 dB의 큰 저감레벨을 나타냈다.

참고문헌

(1) 이주원,정갑철,권영필, "충격음 저감재의 동특성과 실험실 경량충격음레벨 저감량의 상관관계",한국소음 진동공학회 춘계학술대회논문집, pp.191-195, 2003. (2) 김경우, "공동주택 온돌바닥 구조의 중량충격음 레벨 영향요 인 분석에 관한 실험적 연구", 한양대학교 박사학위논문, 2009.