• Title/Summary/Keyword: 충격파 전달

Search Result 56, Processing Time 0.018 seconds

Laser Supported Combustion Waves and Plasma Flows (고에너지펄스를 이용한 충격파 발생과 응용)

  • ;Choi, Ji-Hae;Gwak, Min-Cheol;Yoh, Jai-Ick
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.27-30
    • /
    • 2007
  • We have been setting up experiments on propagation of shock waves generated by the pulsed laser ablation. One side of a thin metal foil is subjected to laser ablation as a shock wave is generated from a localized spot of high intensity energy source. The resulting reactive shock wave, which penetrates through the foil is reflected by an acoustic impedance which causes the metal foil to high-strain rate deform. This short time physics is captured on an ICCD camera. The focus of our research is generating reactive shock wave and high strain rate deforming of thin metal foil for accelerating micro-particles to a very high speed on the orders of several thousand meter per second. Somce innovative applications of this device will be discussed.

  • PDF

Design and Reliability Analysis of the Through-Bulkhead Initiation Module Using CH-6 (CH-6를 적용한 격벽 착화모듈 설계 및 신뢰도 분석)

  • Jang, Seung-Gyo;Cha, Hong-Seok;Kang, Won-Kyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.327-330
    • /
    • 2009
  • A Through-Bulkhead Initiation Module(TBIM) using CH-6 was designed. The TBIM works as the shock-wave generated by a donor charge transmits to the acceptor charge. The structural safety of TBIM housing was calculated via modeling analysis, and the ignition characteristic was proved by 10 cc closed bomb test(CBT). The reliability analysis was made using Probit method on the basis of CBT results. The optimal bulkhead thickness of TBIM which is the most important design parameter was determined using reliability analysis.

  • PDF

Uncoupled Solution Approach for treating Fluid-Structure Interaction due to the Near-field Underwater Explosion (근거리 수중폭발에 따른 유체-구조 상호작용 취급을 위한 비연성 해석방법)

  • Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.125-132
    • /
    • 2019
  • Because the water exposed to shock waves caused by an underwater explosion cannot withstand the appreciable tension induced by the change in both pressure and velocity, the surrounding water is cavitated. This cavitating water changes the transferring circumstance of the shock loading. Three phenomena contribute to hull-plate damage; initial shock loading and its interaction with the hull plate, local cavitation, and local cavitation closure then shock reloading. Because the main concern of this paper is local cavitation due to a near-field underwater explosion, the water surface and the waves reflected from the sea bottom were not considered. A set of governing equations for the structure and the fluid were derived. A simple one-dimensional infinite plate problem was considered to verify this uncoupled solution approach compared with the analytic solution, which is well known in this area of interest. The uncoupled solution approach herein would be useful for obtaining a relatively high level of accuracy despite its simplicity and high computational efficiency compared to the conventional coupled method. This paper will help improve the understanding of fluid-structure interaction phenomena and provide a schematic explanation of the practical problem.

Studies on Through-Bulkhead Initiation Module Using VISAR (VISAR를 이용한 격벽 착화 모듈 특성 연구)

  • Jang, Seung-Gyo;Baek, Sung-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.217-225
    • /
    • 2010
  • A Through-Bulkhead Initiation Module(TBIM) works as the shock-wave generated by the detonation of donor explosive transmits to acceptor explosive. In order to estimate the minimum thickness of the bulkhead of TBIM, the structural stress of TBIM housing is calculated via modeling analysis, and which shows a sufficient margin in strength as the minimum thickness is bigger than 0.1 mm. The free surface velocity at the metal to explosive interface is measured using VISAR to determine the optimal thickness of bulkhead. The shock pressure is calculated from the measured free surface velocity, and the probability of TBIM with respect to the thickness of bulkhead is estimated by comparing the sensitivity of acceptor explosive with it.

  • PDF

Studies on Through-Bulkhead Initiation Module using VISAR (VISAR을 이용한 격벽 착화 모듈 특성 연구)

  • Jang, Seung-Gyo;Baek, Sung-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.16-24
    • /
    • 2010
  • A Through-Bulkhead Initiation Module(TBIM) works as the shock-wave generated by the detonation of donor explosive transmits to acceptor explosive. In order to estimate the minimum thickness of the bulkhead of TBIM, the structural stress of TBIM housing is calculated via modeling analysis, and which shows a sufficient margin in strength as the minimum thickness is bigger than 0.1 mm. The free surface velocity at the metal to explosive interface is measured using VISAR to determine the optimal thickness of bulkhead. The shock pressure is calculated from the measured free surface velocity, and the probability of TBIM with respect to the thickness of bulkhead is estimated by comparing the sensitivity of acceptor explosive with it.

Probabilistic estimation of fully coupled blasting pressure transmitted to rock mass I - Estimation of peak blasting pressure - (암반에 전달된 밀장전 발파압력의 확률론적 예측 I - 최대 발파압력 예측을 중심으로 -)

  • Park, Bong-Ki;Lee, In-Mo;Kim, Dong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.337-348
    • /
    • 2003
  • The propagation mechanism of a detonation pressure with fully coupled charge is clarified and the blasting pressure propagated in rock mass is derived from the application of shock wave theory. The blasting pressure was a function of detonation velocity, isentropic exponent, explosive density, Hugoniot parameters, and rock density. Probabilistic distribution is obtained by using explosion tests on emulsion and rock property tests on granite in Seoul and then the probabilistic distribution of the blasting pressure is derived from the above mentioned properties. The probabilistic distributions of explosive properties and rock properties show a normal distribution so that the blasting pressure propagated in rock can be also regarded as a normal distribution. Parametric analysis was performed to pinpoint the most influential parameter that affects the blasting pressure and it was found that the detonation velocity is the most sensitive parameter. Moreover, uncertainty analysis was performed to figure out the effect of each parameter uncertainty on the uncertainty of blasting pressure. Its result showed that uncertainty of natural rock properties constitutes the main portion of blasting pressure uncertainty rather than that of explosive properties. In other words, since rock property uncertainty is much larger than detonation velocity uncertainty the blasting pressure uncertainty is more influenced by the former than by the latter even though the detonation velocity is found to be the most influencing parameter on the blasting pressure.

  • PDF

Analysis of frequency characteristics and evaluation methods of elevator noise (승강기 소음의 주파수 특성 분석 및 평가 방법 고찰)

  • Kang, Min-Woo;Oh, Yang-Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.607-614
    • /
    • 2021
  • Research on elevator noise has mainly focused on the cause of its occurrence and measures to reduce it. There is still insufficient research on how to accurately measure and evaluate elevator noise. There is a measurement method established as an international standard for the measurement method, but it is also difficult to apply to high-rise apartments, and there are many cases that do not closely reflect the characteristics of elevator noise. In order to solve this problem, a study was conducted to improve the elevator noise measurement method in the current standard. In this study, the characteristics of elevator noise were closely identified. Through frequency analysis of the elevator noise and other equipment, it was verified that the elevator noise is noise with different characteristics from other equipment. Elevator noise was compared with heavy floor impact noise, which is a representative structural transmission noise, as structural transmission noise. Elevator noise was compared with heavy floor impact noise, which is a representative structural transmission noise, as structural transmission noise. The correlation between bang machine and rubber ball was found to be very high at 0.9 level. As a result, it was verified that the mid-low frequency band of the elevator noise is the main structural transmission noise and cannot be evaluated together with other equipment.

Study on the Characteristics of Wavelet Decomposed Details of Low-Velocity Impact Induced AE Signals in Composite Laminaes (저속충격에 의해 발생한 복합적층판 음향방출신호의 웨이블릿 분해 특성에 관한 연구)

  • Bang, Hyung-Joon;Kim, Chun-Gon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.308-315
    • /
    • 2009
  • Because the attenuation of AE signal in composite materials is relatively higher than that of metallic materials, it is required to develop a damage assessment technique less affected by the attenuation property of composite materials in order to use AE sensing as a damage detection method. In the signal processing procedure, it is profitable to use the leading wave that arrives first because the leading wave is less influenced by the boundary conditions. Using wavelet transform, we investigated the frequency characteristics of impact induced AE signals focused on the leading wave in advance and chose the key factors to discriminate the damaged condition quantitatively. In this research, we established a damage assessment technique using the sharing percentage of the wavelet detail components of AE signal, and conducted a low-velocity impact test on composite laminates to confirm the feasibility of the proposed signal processing method.

A Study on Impact Resistance Properties with Composition Materials and Installation Conditions of Protective Panel (방호 패널의 구성 재료 및 설치 조건에 따른 내충격 특성에 관한 연구)

  • Seok, Won-Kyun;Kim, Young-Sun;Lee, Yae-Chan;Nam, Jeong-Soo;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.715-726
    • /
    • 2023
  • This study suggested that protective panels should be installed as sacrificial members as a safety design method for structures with potential explosions such as hydrogen charging stations to minimize direct damage to the structure and have resilience. To this end, the focus of the experiment is on quantitatively evaluating the impact of the structure when the protection panel is installed closely or spaced apart from the structure in a high-speed collision situation of the projectile. The experimental design used steel plates instead of concrete structural members mainly used in the past for excellent reproducibility, and the impact of structural members was compared and analyzed through deformation differences on the back of the steel plate. In addition, the impact of changes in the physical properties of the elastic body used as a separation material for the protective member and the difference in shock wave transmission time according to the protective member and the elastic body on the structural member was investigated.

Study on Aging Characteristics of Thru-Bulkhead Initiator (격벽착화기 노화특성 연구)

  • Kang, Wonkyu;Jang, Seung-gyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.43-51
    • /
    • 2020
  • After the accelerated aging, the bulkhead initiator using high explosives was carried out to verify aging characteristics. The Thru-Bulkhead Initiator operates by transmitting shock-wave generated from micro-initiator to the acceptor and the ignition explosives through the bulkhead. In order to evaluate the life-time of the product, the accelerated aging condition was set according to the life-time, and the ignition performance of the sample was measured every 10 cycles by measuring the delay time and the maximum pressure through the 10cc closed bomb test. In addition, variance analysis was used to determine aging.