• Title/Summary/Keyword: 충격응답

Search Result 381, Processing Time 0.03 seconds

Characteristic Analysis of Falling Weight Impact Response in CF/Epoxy Composite Plates Using Frequency Responses (주파수 응답을 이용한 CF/Epoxy 복합적층판의 낙추충격 특성평가)

  • 임광희;박노식;김영남;김선규;양인영
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.9-17
    • /
    • 2003
  • We have implemented a system of falling weight impact tester in order to evaluate the impact energy absorbing characteristics and impact strength of CFRP laminate plates. The absorbed energy of T-300 orthotropic composites is higher than that of quasi-isotropic specimen over impact energy 7J, but in case of using T700 fiber, much difference does not show. Also, absorbed energy of T-300 orthotropic composites, which are composed of the same stacking number and orientation became more than that of T700 fiber specimen however there was no big difference in case of quasi-isotropic specimens. Delamination area of impacted specimens was measured with ultrasonic C-scanner to find correlation between impact energy and delamination area. Delamination area and frequency responses were evaluated between impacted and unimpacted specimens. There is a strong correlation between frequency responses and impact-induced delamination. The presence and scale of damages have been investigated based on the variations of frequency responses.

A Elastic Analysis for the Impact Response Analysis of Two-Layered Cylindrical Shells (2층 원통쉘의 탄성 충격응답 해석)

  • Park, Sung Jin;MIKAMI, Takashi
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.639-648
    • /
    • 2000
  • A model analysis is used to predict the impact response of a simply supported elastic circular cylindrical shell composed of two bonded isotropic layers. The governing equations for a two-layered cylindrical shell are derived on the basis of an improved theory for the single-layer shell which includes the effects of transverse shear deformation and rotary inertia. Calculations are made for the specific case of the steel-concrete cylindrical shell subjected to a suddenly applied load. The solutions show that the method yields very good results. Therefore the proposed method is useful not only for a better investigating of the response characteristics of the shell but also available for a check on other numerical methods such a FEM.

  • PDF

A Study on Real Time Implementation of an Adaptive Digital Filter Using a Sub-band Structure (SUB-BAND 적응 디지털 필터 실시간 시스템 구현에 관한 연구)

  • 류차희;윤대희;유재하;차일환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.13-20
    • /
    • 1993
  • 충격 응답 시간이 긴 시스템을 모델링하기 위한 실시간 적응 디지털 필터를 구현하였다. 대상 시스템의 충격 응답 시간이 길 때, 일반적인 적응 디지털 필터를 사용하는 경우 발생하는 수렴 속도 저하와 계산량 증가 문제를 해결하기 위해서 서브밴드 구조를 갖는 적응 디지털 필터를 구성하였다. 실시간 처리 시스템에서는 GQMF을 사용하여 입력 신호를 4개 대역으로 분할하여 각 대역별로 적응 필터링을 수행함으로써 수렴 속도를 향상시킨다. 또한 대역별 신호를 동시에 분산 처리하기 때문에 계산량 면에서 효율적이므로 시스템의 충격 응답이 긴 경우에는 실시간 처리가 가능하다. 하드웨어 구성은 범용 신호 처리 프로세서인 DSP56001을 호스트 프로세서로 사용하며, 적응 디지털 필터 칩 DSP56200을 사용하여 각 대역 적응 필터를 구성하였다. 실험은 충격 응답 시간이 16 kHz 필터링 시 2000 탭 길이로 가정된 시스템을 대상으로 부동 소수점 시뮬레이션 결과와 실시간 처리 시스템의 결과를 비교하였다. 밴드를 나누지 않은 기존의 방법과 서브밴드 시스템의 비교 실험 결과 입력이 백색 잡음인 경우 대역별 간섭에 의한 성능 저하가 있었으나, 음성과 유사한 특성을 갖는 유색 잡음인 경우 서브밴드 시스템이 단일 시스템에 비해 성능 향상을 보였다.

  • PDF

Applicability of Impact-Echo Method for Assessment of Residual Strength of Fire-Damaged Concrete (화해된 콘크리트의 잔존 강도 평가에 있어서 충격-반향 기법의 적용성)

  • Shin, Sung-Woo;Kim, Seung-Yong;Kim, Jeong-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.105-112
    • /
    • 2013
  • In this study, the applicability of impact-echo method for assessment of residual strength of fire-damaged concrete is investigated. A series of standard fire test is performed to obtain fire-damaged concrete specimens. Impact-echo tests are executed on the specimens and the responses are analyzed. Compressive strengths of the fire-damaged concrete are evaluated and correlated with the ultrasonic wave velocities determined from the impact-echo responses. The effectiveness of impact-echo based ultrasonic wave velocity measurement for assessment of residual strength of fire-damaged concrete is discussed.

Analysis of Impact Responses Considering Sensor Dynamics (센서 동역학을 고려한 충격응답해석)

  • B. J. Ryu;K. Y. Ahn;B. H. Kwon;I. S. Oh;Lee, G. S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.373.1-373
    • /
    • 2002
  • Impact is the most common type of dynamic loading conditions that give rise to impulsive forces and affects the vibrational characteristics of mechanical systems. Since the impact force and response are measured indirectly through the sensors, it is difficult to predict the impact force and acceleration. In this study, contact force model based on the Hertz law is proposed in order to predict the impact force correctly. (omitted)

  • PDF

Seismic Response Prediction of a Structure Using Experimental Modal Parameters from Impact Tests (충격시험에 의한 실험모드특성을 이용한 구조물의 지진응답 예측)

  • Cho, Sung-Gook;Joe, Yang-Hee;So, Gi-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.75-84
    • /
    • 2010
  • An in-cabinet response spectrum should be generated to perform the seismic qualification of devices and instruments mounted inside safety-related electrical equipment installed in nuclear power plants. The response spectrum is available by obtaining accurate seismic responses at the device mounting location of the cabinet. The dynamic behavior of most of electrical equipment may not be easily analyzed due to their complex mass and stiffness distributions. Considering these facts, this study proposes a procedure to estimate the seismic responses of a structure by a combination of a test and subsequent analysis. This technique firstly constructs the modal equations of the structure by using the experiment modal parameters obtained from the impact test. Then the seismic responses of the structure may be calculated by a mode superposition method. A simple steel frame structure was fabricated as a specimen for the validation of the proposed method. The seismic responses of the specimen were estimated by using the proposed technique and compared with the measurements obtained from the shaking table tests. The study results show that it is possible to accurately estimate the seismic response of the structure by using the experimental modal parameters obtained from the impact test.

Inverse Reconstruction of Sectional Area in Nonuniform Ducts by Using the Acoustical Measurement (음파를 이용한 덕트 내 불균일 단면적의 역문제적 재구성)

  • 김회전;이정권
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.9-16
    • /
    • 2001
  • This paper deals with the inverse reconstruction of sectional area in nonuniform ducts by using the acoustical measurement. There have been many theoretical and experimental studies on the duct area reconstruction. In this research, the method using the impulse response function and area reconstruction algorithm was employed because of its mathematical and experimental simplicity. Based on the study results on the drawback of conventional impulse excitation method, a new measurement method is proposed, that uses the random noise source and the discrete inverse Fourier transform. It is found that the reconstruction errors of the present method is smaller than the conventional method. A random error analysis is performed in order to investigate the causes of reconstruction error and to clarify the applicable data range for area reconstruction.

  • PDF

Investigation of Impact Behavior by Thickness variation of Laminated Composite Subjected to Low-Velocity Impact (저속충격을 받는 복합적층판의 두께 변화에 따른 충격거동 조사)

  • Kwon, Suk-Jun;Jeon, Jin-Hyung;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.74-79
    • /
    • 2008
  • In this study, impact transient responses of (Graphite/Epoxy) laminated composite subjected to low-velocity impact are investigated using a finite element method. Dynamic von-Karman plate equations considering large deflection of plate are modified to include the effect of transverse shear deformations as in Mindlin plate theory and also the rotary inertia effect is considered. The convergence of transient responses is used contact law established through the statical indentation test. We investigate displacements, contact forces and strains by thickness variation of various laminated composite. We compare and analyze each results.

  • PDF

A Study on the Dynamic Impact Response Analysis of Cask by Modal Superposition Method (모드중첩기법을 이용한 CASK의 동적충격응답해석)

  • Lee Young-Shin;Kim Yong-Jae;Choi Young-Jin;Kim Wol-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.373-383
    • /
    • 2005
  • The cask is used to transfer the radioactive material in various fields required to withstand hypothetical accident condition such as 9m drop impact in accordance with the requirement of the domestic requlations and IAEA. So far the impact force has been obtained by the finite element method with complex computational procedure. In this study, the dynamic impact response of the cask body is analyzed using the mode superposition method, and the analysis method is proposed. The results we also validated by comparing with previous experimental results and finite element analysis results. The present method Is simpler than finite element method and can be used to predict the global impact response of cask

Development of the Impulse Response Measurement System for Non-destructive Test of Slab Structure (판상 구조물 비파괴검사를 위한 충격응답시험기의 개발)

  • Chung, Hojoon;Lee, Heuisoon;Oh, Seokhoon;Song, Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.45-52
    • /
    • 2013
  • We developed a Impulse Response Measurement System, including hardware system and data analysis software, for non-destructive test of slab structure. And, we carried out impulse response measurements on the pavement to test performance of the system. In the field test, the developed system measured impulse response stably and showed parameters immediately. Test results showed that dynamic stiffness and average mobility varies significantly depending on the characteristics of the pavement materials. Some data showed anomalous values those reflect variations in pavement itself or subsurface ground. Developed system gives informations of conditions of slab structure easily and quickly. So, 2-D monitoring with the system will be helpful in maintaining various slab structures.