• Title/Summary/Keyword: 출력선량계수

Search Result 31, Processing Time 0.028 seconds

Determination of Electron Beam Output Factors of Individual Applicator for ML-15MDX Linear Accelerator (선형가속기 ML-15MDX의 각 Applicator에 대한 전자선 출력선량 계수 결정)

  • Park, Tae-Jin;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.5 no.1
    • /
    • pp.87-99
    • /
    • 1994
  • Purpose : The determination of electron beam output factor was investigated from individual applicator for various energy of ML-15MDX linear accelerator. The output factor of electron beam was extended from square to rectangular field in individual applicator size through with a least-square fit to a polynomial expression. Materials : In this experiments. the measurement of output was obtained from 2${\times}$cm$^2$ to 20${\times}$20cm$^2$ of field size in different applicator size for 4 to 15 MaV electron beam energy. The output factor was defined as the ratio of maximum dose output on the central axis of the field of individual applicator size to that of a given field size. Applicator factors were derived from comparing with the output dose of reference field size 10${\times}$10cm$^2$. The thickness of block was specially designed as 10mm in thickness of Lipowitz metal for field shaping in all electron energy. Two types of output curves are included as output factors versus side of square fields and that of variable side length for X and Y in one-dimensional to compare the expected values to that of experiments. Results : Expected output factors of rectangular which was derived from that of square fields in individual applicator size from 2${\times}$2cm$^2$ to 20${\times}$20cm$^2$ in different electron energy was very closed to that of experimental measurements within 2% uncertainty. However 1D method showed a 3% discrepancy in small rectangular field for low energy electron beam. Conclusion : Emperical non-linear polynomial regressions of square root and 1D method were performed to determin the output factor in various field size and electron energy. The expected output of electron beam of square root method for square field and 1D method for rectangular field were very closed to that of measurement in all selected electron beam energy.

  • PDF

The Output Factor of Small Field in Multileaf Collimator of 6 MV Photon Beams (다엽제한기 소조사면의 6 MV 광자선 출력선량계수)

  • Lee, Ho Joon;Choi, Tae-Jin;Oh, Young Kee;Jeun, Kyung Soo;Lee, Yong Hee;Kim, Jin Hee;Kim, Ok Bae;Oh, Se An;Kim, Sung Kyu;Ye, Ji Woon
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • The IMRT is proper implement to get high dose deliver to tumor as its shape and selective approach in radiation therapy. Since the IMRT is performed as modulated the radiation fluence by the MLC created the open shapes and its irradiation time, the dose of segment of radiation field effects on the cumulated portal dose. The accurate output factor of small and step shape of segment is important to improve the determination of deliver tumor dose as it is directly proportional to dose. This experiment performed with the 6 MV photon beam of Clinac Ex(Varian) from $3{\times}3cm^2$ to $0.5{\times}0.5cm^2$ small field size for collimator jaw in MLC free and/or for MLC open field in fixed collimator jaw $10{\times}10cm^2$ using the CC01 ion chamber, SFD diode, diamond detector and X-Omat film dosimetry. As results of normalized to the reference field of $10{\times}10cm^2$ of MLC, the output factor of $3{\times}3cm^2$ showed $0.899{\pm}0.0106$, $0.855{\pm}0.0106$ for $2{\times}2cm^2$, $0.764{\pm}0.0082$ for $1{\times}1cm^2$ and $0.602{\pm}0.0399$ for $0.5{\times}0.5cm^2$. The output factor of MLC open field has shown a maximum 3.8% higher than that of the collimator jaw open field.

Evaluation of the Output Dose of a Linear Accelerator Photon Beams by Using the Ionization Chamber TM31010 Series through TG-51 Protocol to Postal Monitoring Output of RPC for 5 Years (TM31010 계열의 공동이온전리함과 TG-51을 이용한 선형가속기광자선의 5년간 출력선량 평가)

  • Choi, Tae-Jin;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.22 no.2
    • /
    • pp.92-98
    • /
    • 2011
  • This study is to keep the accuracy and stability of the output dose evaluations for linear accelerator photon beams by using the air ionization chambers (TM31010, 0.125 cc, PTW) through the Task Group 51 protocol. The absorbed dose to water calibration factor $N_{dw}{^{Co-60}}$ was delivered from the air kerma calibration factor $N_k$ which was provided from manufacture through SSDL calibration for determination of output factor. The ionization chamber of TM31010 series was reviewed the calibration factor and other parameters for reduce the uncertainty within ${\pm}2%$ discrepancy and we found the supplied $N_{dw}{^{Co-60}}$ which was derived from Nk has shown a -2.8% uncertainty compare to that of PSDL. The authors provided the program to perform the output dosimetry with TG-51 protocol as it is composed same screen of TG-51 worksheets. The evaluated dose by determination of output factor delivered to postal TLD block for comparison the output dose to that of MDACC (RPC) in postal monitoring program. The results have shown the $1.001{\pm}0.013$ for 6 MV and $0.997{\pm}0.012$ discrepancy for 15 MV X rays for 5 years followed. This study shows the evaluated outputs for linear accelerate photon beams are very close to that of international output monitor with small discrepancy of ${\pm}1.3%$ with high reliability and showing the gradually stability after 2010.

Evaluation of the Small Field of for the Detector Type Medical Linear Accelerator (의료용 선형가속기의 소조사면에 대한 검출기 종류에 따른 평가)

  • Lee, Dong-Woon;Jung, Kang-Kyo;Shin, Gwi-Soon;Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.177-184
    • /
    • 2016
  • Recently linear accelerator of radiation therapy intensity modulated radiation therapy, stereotactic radiation therapy are widely used. Such radiation treatment techniques are generally difficult to exclude the small field by using the inverse treatment plan. It is necessary to dose an accurate measurement of characteristics of the small field. Thus, using different detectors to measure the volume of the effective percentage depth dose, beam profile, and the output factor of the small field was to evaluate the dose characteristics of each detector. Experimental results for the X-ray beam 6 MV energy beam quality($PDD_{20}/PDD_{10}$) is $10{\times}10cm^2$ Diode detector is as high as 2.4% compared to Pinpoint detector. All field size to lesser effective volume of Diode detector shows that it is far better than other detectors by more than 50% of small penumbra, therefore spatial resolution far excellent. In field size $2{\times}2cm^2$ Semiflex detector was measured about 2% less than the other detector. Field size $1{\times}1cm^2$ is that there is no judgment about the validity show the difference between 20%. Field size $1{\times}1cm^2$ from the measured values of the Diode detector and Pinpoint detector showed a 13% difference. Less than field size $3{\times}3cm^2$ the feed to the difference between the output factor of the effective volume of the detector to be used for the effective volume available to the detector.

Calculation Method of Entrance Skin Dose in X-ray Beam Quality Factor (선질계수에 의한 피부입사선량 계산법)

  • Kim, Sung-Chul;Kim, Chong-Yeal;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.258-267
    • /
    • 2010
  • This interest in radiation exposure makes increasing doctor's awareness and knowledge of radiation dose in patients during X-ray test important in reducing patient's uneasiness. However, very few facilities are equipped with measurement instruments. Therefore, an intensive study to find out patient dose using computational method has been initiated. This study used special features of the bit system and NDD-M and directly measured the output dose of diagnostic X-ray instruments used in Korea to create tables. Two different methods were found to be adequate when applied to cases when X-ray outputs were both known and unknown, and comparative experiments with real measurement doses were carried out. Presented methods were found to provide more accurate results compared to the bit system and NDD-M. Therefore, patient dose during clinical trials were found to be more easily acceptable to medical personnel in the radiation field in terms of radiation exposure and reduction of medical X ray dose.

A Study of Dosimetric Characteristics of a Diamond Detector for Small Field Photon Beams (광자선 소조사면에 대한 다이아몬드 검출기의 선량특성에 관한 연구)

  • Loh, John-K.;Park, Sung-Y.;Shin, Dong-O.;Kwon, Soo-I.;Lee, Kil-D.;Kim, Woo-C.;Cho, Young-K.
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.195-203
    • /
    • 1999
  • It is difficult to determine dosimetric characteristics for small field photon beams since such small fields do not achieve complete lateral electronic equilibrium and have steep dose gradients. Dosimetric characteristics of small field 4, 6, and 10 MeV photon beams have been measured in water with a diamond detector and compared to measurements using small volume cylindrical and plane parallel ionization chambers. Percent depth dose (PDD) and beam profiles for 6 and 10 MeV photon beams were measured with diamond detector and cylindrical ion chamber for small fields ranging from $1{\times}1\;to\;4{\times}4cm^2$. Total scatter factors($S_{c,p}$) for 4, 6, and 10 MeV photon beams were measured with diamond detector, cylindrical and plane parallel ion chambers for small fields ranging from $1{\times}1\;to\;4{\times}4cm^2$. The $S_{c,p}$ factors obtained with three detectors for 4, 6, and 10 MeV photon beams agreed well ($\pm1.2%$) for field sizes greater than $2{\times}2,\;2.5{\times}2.5,\;and\;3{\times}3\;cm^2$, respectively. For smaller field sizes, the cylindrical and plane parallel ionization chambers measure a smaller $S_{c,p}$ factor, as a result of the steep dose gradients across their sensitive volumes. The PDD values obtained with diamond detector and cylindrical ionization chamber for 6 and 10MeV photon beams agreed well ($\pm1.5%$) for field sizes greater than $4{\times}4\;cm^2$. For smaller field sizes, diamond detector produced a depth-dose curve which had a significantly shallower falloff than that obtained from the measurements of relative depth-dose with a cylindrical ionization chamber. For the measurements of beam profiles, a distortion in terms of broadened penumbra was observed with a cylindrical ionization chamber since diamond detector exhibited higher spatial resolution. The diamond detector with small sensitive volume, near water equivalent, and high spatial resolution is suitable detector compared to ionization chambers for the measurements of small field photon beams.

  • PDF

A Study on the Variation of Transmission Factors, Output Factors and Percent Depth Doses by Wedge Filters for 4~10 MV X-Ray Beams (4~10 MV X-선의 쐐기 (wedge) 필터의 투과율과 출력계수, 선축상 선량분포의 변화에 관한 연구)

  • 강위생
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.3-17
    • /
    • 1997
  • Because a wedged beam consists of attenuated primary photons and scattered radiations from wedge, the spectrum of the wedged beam does not coincide with that of an open beam with same geometry. The aims of current report are to get exact information about whether effects of 15-60$^{\circ}$ wedge for 4 -10 MV photon beams should be considered for dose calculation or not, and to suggest a reference condition for measurement of wedge transmission factor. Percent depth dose of both open and wedged fields with angles of 15, 30, 45, 60$^{\circ}$ for beams of 4 MV(Clinac 4/100, Varian), two 6 MV(Clinac 6/100 and Clinac 2100C, Varian), 10 MV(Clinac 2100C, Varian) X-rays were measured to 30cm deep in water using ionization chambers. Hardening factors of photon beams were calculated with measured PDDs. Both field size factors and transmission factors of wedge filters were measured at d$_{max}$ in water. Beam hardening factors of wedged fields of 4 and 6 MV X-ray were larger than 1 for all wedge angles, field sizes and depths deeper than d$_{max}$ Beam hardening factors for wedge angles 15, 30, 45, 60$^{\circ}$ for 10$\times$10cm were respectively 1.010, 1.014, 1.023 and 1.034 for 4MV X-ray, 1.005, 1.008, 1.019, and 1.024 for 6MV X-ray of Clinac 6/100, 1.011, 1.021, 1.032, 1.036 for 6MV X-ray of Clinac 2100C, and 1.008, 1.012, 1.012 and 1.012 for 10MV X-ray. Beam hardening factors of 10MV X-ray were 1 within 1.2% difference for all wedge angles, depths and field sizes. It was made clear that for 6MV X-rays, the beam hardening factor depends on treatment machine. The relationship of the factor and depth was linear. Field size factor at d$_{max}$ was independent of wedge angle except for the field of 15$\times$15cm. and maximum difference of the field size factors for the field size was 1.4% for 4MV X-ray. When the wedge factor is determined, dependence of the factor on field size is negligible at d$_{max}$ but should be considered at deeper depth. Calculating dose distribution or MU, the beam hardening factor should be applied for 4~6MV X-ray beams, but might not be considered for 10MV beam. When wedge transmission factor was determined at d$_{max}$ or in air, field size factors for open field are also applicable to wedged fields, but otherwise, field size factor for each wedge or wedge factor depending on field size should be applied.

  • PDF

The patient dose calculation model on the Exell program (촬영조건에 의한 환자 피폭선량의 자동계산 프로그램)

  • Kim, Jung-Min;Seok, Jin-Yong
    • Journal of radiological science and technology
    • /
    • v.25 no.2
    • /
    • pp.35-38
    • /
    • 2002
  • Recently, They are usually recording the patient information on the Hospital Information System. In the department of Radiology, For the purpose of assuming patient exposed dose, Authors contrived the mathematical calculation model by use of x-ray out put data on the Excel program, if they in put the exposure factors (kVp, mAs, thickness), the program could automatically calculate the patient Skin dose. The assuming data by three dimensional equation has average errors within ${\pm}5%$, there for We could make good use of clinical field in department of radiology.

  • PDF

A Study on Electron Dose Distribution of Cones for Intraoperative Radiation Therapy (수술중 전자선치료에 있어서 선량분포에 관한 연구)

  • Kang, Wee-Saing;Ha, Sung-Whan;Yun, Hyong-Geun
    • Progress in Medical Physics
    • /
    • v.3 no.2
    • /
    • pp.1-12
    • /
    • 1992
  • For intraoperative radiation therapy using electron beams, a cone system to deliver a large dose to the tumor during surgical operation and to save the surrounding normal tissue should be developed and dosimetry for the cone system is necessary to find proper X-ray collimator setting as well as to get useful data for clinical use. We developed a docking type of a cone system consisting of two parts made of aluminum: holder and cone. The cones which range from 4cm to 9cm with 1cm step at 100cm SSD of photon beam are 28cm long circular tubular cylinders. The system has two 26cm long holders: one for the cones larger than or equal to 7cm diamter and another for the smaller ones than 7cm. On the side of the holder is an aperture for insertion of a lamp and mirror to observe treatment field. Depth dose curve. dose profile and output factor at dept of dose maximum. and dose distribution in water for each cone size were measured with a p-type silicone detector controlled by a linear scanner for several extra opening of X-ray collimators. For a combination of electron energy and cone size, the opening of the X-ray collimator was caused to the surface dose, depths of dose maximum and 80%, dose profile and output factor. The variation of the output factor was the most remarkable. The output factors of 9MeV electron, as an example, range from 0.637 to 1.549. The opening of X-ray collimators would cause the quantity of scattered electrons coming to the IORT cone system. which in turn would change the dose distribution as well as the output factor. Dosimetry for an IORT cone system is inevitable to minimize uncertainty in the clinical use.

  • PDF