• Title/Summary/Keyword: 축인본

Search Result 9,100, Processing Time 0.039 seconds

Preparation and Pervaporative Alcohol Dehydration of Crystallographically b/c-axis Oriented Mordenite Zeolite Membranes (결정학적으로 b/c-축 방향으로 배향된 모데나이트 제올라이트 분리막의 제조 및 투과증발 알코올 탈수 거동)

  • Kim, Young-Mu;Lee, Du-Hyoung;Kim, Min-Zy;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.28 no.5
    • /
    • pp.340-350
    • /
    • 2018
  • In the present study, crystallographically b- and c-axis oriented mordenite zeolite membranes were prepared and their pervaporative ethanol dehydration was investigated. The seed layer with a high coverage grew to be c-axis oriented dense layer, while the seed layer with a low coverage grew to be b-axis oriented layer. This phenomenon could be explained by the evolutionary selection growth mechanism. The b-axis grown membrane with 8-membered rings showed a high separation factor of above 1000 and a considerable total flux of around $0.2kg/m^2h$. The c-axis grown, columnar structured membrane with 8- and 12-membered rings showed a low separation factor of less than 200 and a relatively high total flux of around $0.25kg/m^2h$. The high performance of b-axis grown membrane was due to the relatively small opening of 8-membered rings. Water molecules can freely permeate through the openings, but ethanol molecules, difficultly. Therefore, in the present study, we introduced a new method to control crystallographic orientation of mordenite membrane by changing seeding amount of needle-like crystals, and elucidated that b-axis oriented mordenite membrane showed better performance than c-axis grown mordenite membrane.

A Fast Normalized Cross-Correlation Computation for WSOLA-based Speech Time-Scale Modification (WSOLA 기반의 음성 시간축 변환을 위한 고속의 정규상호상관도 계산)

  • Lim, Sangjun;Kim, Hyung Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.7
    • /
    • pp.427-434
    • /
    • 2012
  • The overlap-add technique based on waveform similarity (WSOLA) method is known to be an efficient high-quality algorithm for time scaling of speech signal. The computational load of WSOLA is concentrated on the repeated normalized cross-correlation (NCC) calculation to evaluate the similarity between two signal waveforms. To reduce the computational complexity of WSOLA, this paper proposes a fast NCC computation method, in which NCC is obtained through pre-calculated sum tables to eliminate redundancy of repeated NCC calculations in the adjacent regions. While the denominator part of NCC has much redundancy irrespective of the time-scale factor, the numerator part of NCC has less redundancy and the amount of redundancy is dependent on both the time-scale factor and optimal shift value, thereby requiring more sophisticated algorithm for fast computation. The simulation results show that the proposed method reduces about 40%, 47% and 52% of the WSOLA execution time for the time-scale compression, 2 and 3 times time-scale expansions, respectively, while maintaining exactly the same speech quality of the conventional WSOLA.

Estimation of the Axial Stiffness of Reinforcing Piles in Vertical Extension Structures (수직증축 공동주택 하부 신설 보강말뚝의 축강성 산정)

  • Kim, Do-Hyun;Jeong, Sang-Seom;Cho, Hyun-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.35-44
    • /
    • 2019
  • In this study, the axial stiffness of reinforcing piles (Kvr) for the vertical extension remodeling structures was estimated through 3D finite element analysis. In the computation of the minimum required axial stiffness of reinforcing piles, proposed maximum axial stiffness of old and deteriorated existing piles (Kve) based on theoretical and experimental approaches will be applied. Through this, the required increase rate of axial stiffness of reinforcing piles in order to support the increased structural loading was proposed for end-bearing and friction piles by different slenderness ratio (L/D). The numerical model was validated by comparing the computed results with actual field measurements. Based on the computed results, it was concluded that the end-bearing reinforcing pile needs 44% - 67% increase in axial stiffness to deal with the deterioration of existing piles and support the additional structural load due to vertical extension remodeling.

Feature Extraction by Line-clustering Segmentation Method (선군집분할방법에 의한 특징 추출)

  • Hwang Jae-Ho
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.401-408
    • /
    • 2006
  • In this paper, we propose a new class of segmentation technique for feature extraction based on the statistical and regional classification at each vertical or horizontal line of digital image data. Data is processed and clustered at each line, different from the point or space process. They are designed to segment gray-scale sectional images using a horizontal and vertical line process due to their statistical and property differences, and to extract the feature. The techniques presented here show efficient results in case of the gray level overlap and not having threshold image. Such images are also not easy to be segmented by the global or local threshold methods. Line pixels inform us the sectionable data, and can be set according to cluster quality due to the differences of histogram and statistical data. The total segmentation on line clusters can be obtained by adaptive extension onto the horizontal axis. Each processed region has its own pixel value, resulting in feature extraction. The advantage and effectiveness of the line-cluster approach are both shown theoretically and demonstrated through the region-segmental carotid artery medical image processing.

Robust Slewing Control of A Flexible Space Structure using Sliding Surface (슬라이딩 평면을 이용한 유연우주비행체의 강인 선회제어)

  • Kim, Jin Hyeong;Hong, Chang Ho;Seok, Jin Yeong;Bang, Hyo Chung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2003
  • This paper presents a robust slewing control of a flexible space structure based on sliding surface design. A sliding surface is designed for a single-axis rest-to-rest slewing in view of target angle, target angular velocity, and root monent of the flexible appendage. In comparison with the Lypunov control law, both controllers guarantee the stability and command tracking capabilities for nominal system. It is also shown that the designed control law provides further robustness to internal/external uncertainties. Extending the results of a single-axis maneuver, a sliding mode control law was sought for an arbitrary three-axis maneuver. Quaternion was used to determine the attitude of a space structure and sliding surfaces were designed for each axis, thereby a robust control law was derived considering the coupling effects between each rotational axis during the maneuver. Several numerical examples were demonstrated to show the effectiveness of the designed control law.

Traffic Signal Control Methods for Functional Improvements in COSMOS (COSMOS 안정화를 위한 교통축 및 감응제어 방법연구)

  • 이승환;오영태;이상수
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.6
    • /
    • pp.31-43
    • /
    • 2002
  • Traffic signal control methods are suggested to improve the operational effectiveness of COSMOS system in Seoul. First. a method that improves progression of the corridor traffic flow within a common sub-area was explored. Applying this method, both frequency and magnitude of offset transition were reduced as compared to the existing method. In addition, the level of connection among neighboring corridors increased by applying the method, thus the qualify of progression was also improved. Second, a practical guideline on signal phase design was proposed to improve the efficiency of actuated operations for the left-turn movement. Last, a method for estimating optimal queue length parameters was surveyed and evaluated. An evaluation study was performed for the suggested methods through both field and simulation studies. Results showed that the proposed methods gave better performance than the existing methods. It is expected that the use of proposed methods can improve operational performance of COSMOS.

High-speed Rail Infrastructure Priority Decision Making on Level of Design Speed by Rail Network Design Problem (철도망 설계모형을 이용한 설계속도 수준별 고속철도망 투자우선순위 선정)

  • Park, Jin-Kyung;Lim, Yong-Taek;Lee, Jun;Eom, Jin-Ki;Moon, Dae-Seop
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.427-436
    • /
    • 2009
  • This paper introduced Railway Network Design Problem (RNDP) to provide priority decisions on high-speed railway investment scenarios defined by various network segments and train systems. The RNDP optimizes the objective functions of minimize total travel time. Results show that the priority of high-speed railway investment is found to be East-west, West-coast, and South-coast line respectively. An entirely new line built with 400km/h is found to be the best alternative to East-west line. Regarding West-coast and South-coast line, the combined alternative of upgrading Geolla and Kyeonjon line with 200km/h and building a new line with 400km/h and 350km/h for remains of each line is the best.

Numerical Investigation on the Flow Noise Characteristics of the Hybrid Vertical-axis Wind Turbine (복합형 수직축 풍력발전기의 유동소음특성에 관한 수치적 고찰)

  • Kim, Sanghyeon;Cheong, Cheolung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.351-357
    • /
    • 2014
  • In this paper, flow noise characteristics of the hybrid vertical-axis wind turbine is investigated. Hybrid vertical-axis wind turbines consisting of two types of vertical-axis wind turbines, Savonius and Darrieus, are devised to maximize merits of one turbine and thus minimize demerits of the other turbine. In order to predict flow noise radiating from hybrid vertical-axis wind turbines, hybrid computatioinal aero acoustic techniques are used. First, unsteady flow fields around the turbine are predicted using computational fluid dynamics method. Then, the flow noise radiations from the turbines are predicted by applying acoustic analogy to the predicted flow fields. Based on numerical results, noise characteristics of a hybrid vertical-axis wind turbine is investigated and is compared with those of Savonius and Darrieus wind turbines.

Design of a 6-Axis Inertial Sensor IC for Accurate Location and Position Recognition of M2M/IoT Devices (M2M / IoT 디바이스의 정밀 위치와 자세 인식을 위한 6축 관성 센서 IC 설계)

  • Kim, Chang Hyun;Chung, Jong-Moon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.82-89
    • /
    • 2014
  • Recently, inertial sensors are popularly used for the location and position recognition of small devices for M2M/IoT. In this paper, we designed low power, low noise, small sized 6-axis inertial sensor IC for mobile applications, which uses a 3-axis piezo-electric gyroscope sensor and a 3-axis piezo-resistive accelerometer sensor. Proposed IC is composed of 3-axis gyroscope readout circuit, two gyroscope sensor driving circuits, 3-axis accelerometer readout circuit, 16bit sigma-delta ADC, digital filter and control circuit and memory. TSMC $0.18{\mu}m$ mixed signal CMOS process was used. Proposed IC reduces 27% of the current consumption of LSM330.

Position Control of Linear Motor by Using Enhanced Cross-Coupling Algorithm (개선된 교차축 연동제어기를 이용한 리니어 모터의 위치제어)

  • Han, Sang-Oh;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.369-374
    • /
    • 2010
  • Linear motors are easily affected by load disturbances, force ripples, friction, and parameter variations because there are no mechanical transmissions that can reduce the effects of model uncertainties and external disturbance. In this study, a nonlinear adaptive controller to achieve high-speed/high-accuracy position control of a two-axis linear motor is designed. The operation of this controller is based on a cross-coupling algorithm. Nonlinear effects such as friction and force ripples are estimated and compensated for. An enhanced cross-coupling algorithm is proposed for effectively improving the biaxial contour accuracy while achieving closed-loop stability. The proposed controller is evaluated by performing computer simulations.