DOI QR코드

DOI QR Code

Preparation and Pervaporative Alcohol Dehydration of Crystallographically b/c-axis Oriented Mordenite Zeolite Membranes

결정학적으로 b/c-축 방향으로 배향된 모데나이트 제올라이트 분리막의 제조 및 투과증발 알코올 탈수 거동

  • Kim, Young-Mu (Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Lee, Du-Hyoung (Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Kim, Min-Zy (Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Cho, Churl-Hee (Graduate School of Energy Science and Technology (GEST), Chungnam National University)
  • 김영무 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 이두형 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 김민지 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 조철희 (충남대학교 에너지과학기술대학원 에너지과학기술학과)
  • Received : 2018.10.22
  • Accepted : 2018.10.27
  • Published : 2018.10.31

Abstract

In the present study, crystallographically b- and c-axis oriented mordenite zeolite membranes were prepared and their pervaporative ethanol dehydration was investigated. The seed layer with a high coverage grew to be c-axis oriented dense layer, while the seed layer with a low coverage grew to be b-axis oriented layer. This phenomenon could be explained by the evolutionary selection growth mechanism. The b-axis grown membrane with 8-membered rings showed a high separation factor of above 1000 and a considerable total flux of around $0.2kg/m^2h$. The c-axis grown, columnar structured membrane with 8- and 12-membered rings showed a low separation factor of less than 200 and a relatively high total flux of around $0.25kg/m^2h$. The high performance of b-axis grown membrane was due to the relatively small opening of 8-membered rings. Water molecules can freely permeate through the openings, but ethanol molecules, difficultly. Therefore, in the present study, we introduced a new method to control crystallographic orientation of mordenite membrane by changing seeding amount of needle-like crystals, and elucidated that b-axis oriented mordenite membrane showed better performance than c-axis grown mordenite membrane.

본 연구에서는 바늘형 종결정 코팅 양을 조절함으로써 결정학적으로 b-축 그리고 c-축으로 배향된 모데나이트(MOR) 제올라이트 분리막을 제조하고 결정학적 배향이 투과증발 에탄올 탈수 거동에 미치는 영향을 고찰하였다. c-축으로 배향된 종결정의 코팅 양이 증가할수록 b-축에서 c-축으로 배향된 분리막이 얻어졌고 이는 진화론적 성장으로 설명되었다. b-축 방향으로 배향된 분리막의 경우 1000 이상의 높은 선택도와 $0.2kg/m^2h$의 총 투과도를 나타내었으며 c-축 배향된 분리막 보다 우수한 분리성능을 나타내었다. 이는 물의 운동역학적 직경이 b-축 방향으로 단일 존재하는 8R 기공채널의 직경에 비하여 작기 때문에 물의 이동이 방해되지 않는 반면 에탄올은 상대적으로 방해받기 때문으로 설명되었다. 따라서 본 연구로부터 바늘형 종결정 코팅 양을 조절함으로써 모데나이트 분리층의 결정학적 배향을 조절할 수 있었고, b-축으로 배향된 모데나이트 분리막이 보다 우수한 투과증발 에탄올 탈수 거동을 보임을 확인할 수 있었다.

Keywords

References

  1. Q. Liu, R. D. Noble, J. L. Falconer, and H. H. Funke, "Organic/water separation by pervaporation with a zeolite membrane", J. Membr. Sci., 117, 163 (1996). https://doi.org/10.1016/0376-7388(96)00058-0
  2. T. Sano, M. Hasegawa, Y. Kawakami, Y. Kiyozumi, H. Yanagishita, D. Kitamoto, and F. Mizukami, "Potentials of silicate membranes for the separation Alcohol/water mixtures studies in surface", Science and Catalysis., 84, 1175 (1994).
  3. Shinuang Li, V A. Tuan, J. L. Falconer, and R. D. Nobel, "X-type zeolite membranes: Preparation, characterization and pervaporation performance", Micro. Meso. Mater., 53, 59 (2002). https://doi.org/10.1016/S1387-1811(02)00324-4
  4. H. S. Choi, J. H. Kim, S. K. Lee, and H. H. Park, "Dehydration characteristics of I-propyl alcohol aqueous solution through NaA zeolite membrane", Membr. J., 12, 158 (2002).
  5. G. J. Kim and S. J. Nam, "Synthesis of microporous zeolitic membranes and application in alcohol/water separation", Membr. J., 9, 97 (1999).
  6. P. K. Bajpai, "Synthesis of mordenite type zeolite", Zeolites., 6, 2 (1986). https://doi.org/10.1016/0144-2449(86)90002-3
  7. A. A. Shaikh, P. N. Joshi, N. E. Jacob, and V. P. Shiralkar, "Direct hydrothermal crystallization of high-silica large-port mordenite", Zeolites., 13, 511 (1993). https://doi.org/10.1016/0144-2449(93)90227-T
  8. C. Shao, H. Y. Kim, X. Li, S. J. Park, and D. R. Lee, "Synthesis of high-silica-content mordenite with different $SiO_2/Al_2O_3$ ratios by using benzene-1,2-diol as additives", Mater. Lett., 56, 24 (2002). https://doi.org/10.1016/S0167-577X(02)00411-1
  9. J. E. Gilbert and A. Mosset, "Large crystals of mordenite and MFI zeolites", Mater. Res. Bull., 33, 997 (1998). https://doi.org/10.1016/S0025-5408(98)00081-6
  10. T. Sano, S. Wakabayashi, Y. Oumi, and T. Uozumi, "Synthesis of large mordenite crystals in the presence of aliphatic alcohol", Micro. Meso. Mater., 46, 67 (2001). https://doi.org/10.1016/S1387-1811(01)00285-2
  11. K. Shiokawa, M. Ito, and K. Itabashi, "Crystal structure of synthetic mordenite", Zeolite, 9, 170 (1989). https://doi.org/10.1016/0144-2449(89)90021-3
  12. M. Fatima, V. Marques, D. B, Lopes, J. B Brandao, and C. A. Henriques, "Polyethylene synthesis catalyzed by $Cp_2ZrCl_2$ supported on mordenites with different physico-chemical properties", Z. Naturforsch., 61b, 312 (2005).
  13. G. Li, X. Su, and R. Lin, "Preparation of highly water-selective mordenite membranes via post-synthetic treatment with oxalic acid", Mater., 61, 23 (2007).
  14. R. Zhou, Z. Hu, N. Hu, L. Duan, X. Chen, and H. Kita, "Preparation and microstructural analysis of high-performance mordenite membranes in fluoride media", Micro. Meso. Mater., 156, 166 (2012). https://doi.org/10.1016/j.micromeso.2012.02.023
  15. M. Matsukata, K. Sawamura, T. Shirai, M. Takada, Y. Sekine, and E. Kikuchi, "Controlled growth for synthesizing a compact mordenite membrane", J. Membr. Sci., 316, 18 (2008). https://doi.org/10.1016/j.memsci.2007.11.037
  16. K. Sato, K. Sugimoto, T. Kyotani, N. Shimotsuma, and T. Kurata, "Synthesis, reproducibility, characterization, pervaporation and technical feasibility of preferentially b-oriented mordenite membranes for dehydration of acetic acid solution", J. Membr. Sci., 385, 20 (2011).
  17. G. Li, R. Lin, E. Kikuchi, and M. Matsukata, "Growth mechanism of a preferentially oriented mordenite membrane", J. Zhejiang. Univ. Sci. B, 6, 369 (2005).
  18. A. van der Drift, "Evolutionary selection, A principle governing growth orientation in vapour-deposited layers", Philips Res. Repts., 22, 267 (1967).
  19. E. M. Yang, H. R. Lee, and C. H. Cho, "Effect of precursor alumina size on pore structure and gas permeation properties of tubular a-alumina support prepared by slip casting process", Membr. J., 26, 372 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.372
  20. D. H. Lee, S. F. Alam, H. R, Lee, P. Sharma, C. H. Cho, and M. H Han, "Template-free hydrothermal synthesis of high phase purity mordenite zeolite particles using natural zeolite seed for zeolite membrane preparation", Membr. J., 26, 381 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.381
  21. M. M. J. Treacy and J. B. Higgins, "Collection of simulated XRD powder patterns for zeolite", pp. 244-245, 4th Edition, Elsevier, Netherlands (2001).
  22. http://www.iza-online.org/natural/Datasheets/Mordenite/mordenite.htm, October 18 (2018).
  23. P. Kunecki, R. Panek, A. Koteja, and W. Franus, "Influence of the reaction time on the crystal structure of Na-P1 zeolite obtained from coal fly ash microspheres", Micro. Meso. Mater., 266, 102 (2018). https://doi.org/10.1016/j.micromeso.2018.02.043
  24. Musyoka and N. Mulei, "Hydrothermal synthesis and optimisation of zeolite Na-P1 from South African coal fly ash", Univ of West. Cape. (2009).
  25. A. Navajas, R. Mallada, C. Tellez, J. Coronas, M. Menedez, and J. Santamaria, "Preparation of mordenite membranes for pervaporation of water-ethanol mixture", Desalination., 148, 25 (2002). https://doi.org/10.1016/S0011-9164(02)00648-3
  26. L. Casado, R. Mallada, C. Tellez, J. Coronas, M. Menendez, and J. Santamaria, "Preparation, characterization and pervaporation performance of mordenite membranes", J. Membr. Sci., 216, 135 (2003). https://doi.org/10.1016/S0376-7388(03)00065-6
  27. A. Navajas, R. Mallada, C. Tellez, J. Coronas, M. Menendez, and J. Santamaria, "Study on the reproducibility of mordenite tubular membranes used in the dehydration of ethanol", J. Membr. Sci., 299, 166 (2007). https://doi.org/10.1016/j.memsci.2007.04.038
  28. Y. Zhang, Z. Xu, and Q. Chen, "Synthesis of small crystal polycrystalline mordenite membrane", J. Membr. Sci., 210, 361 (2002). https://doi.org/10.1016/S0376-7388(02)00414-3