• Title/Summary/Keyword: 축소모형실험

Search Result 496, Processing Time 0.024 seconds

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law)

  • ;;;Guo, Xun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.101-108
    • /
    • 2003
  • Small-scale models have been frequently used for experimental evaluation of seismic performance because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material. added mass is demanded from a volumetric change and scale factor could be limited due to size of aggregate. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor and equivalent modulus ratio. In this study, compressive strength tests are conducted to analyze equivalent modulus ratio of micro-concrete to normal-concrete. Equivalent modulus ratios are divided into multi phases, which are based on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test. considering equivalent multi-phase similitude law based on seismic damage levels, is developed. In addition, prior to the experiment. it is verified numerically if the algorithm is applicable to the pseudodynamic test.

Experimental Investigation of Consolidation Induced Contaminant Transport Using a Centrifuge

  • Horace, Moo-Young;Kim, Tae-Hyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.35-41
    • /
    • 2003
  • Laboratory procedures are available for estimating contaminant migration from sediment into caps by diffusion, but diffusion may not be the major process affecting capping effectiveness. Movement of contaminated pore water from sediment into caps due to sediment consolidation during and after cap placement may be much more significant than contaminant diffusion into caps. To verify this phenomenon, model tests were conducted by utilizing a research centrifuge. In this study, test was modeled for 22.5 hours at 100 g, which modeled a contaminant migration time of 25 years for a prototype that was 100 times larger than the centrifuge model. Centrifuge test results illustrate that advection and dispersion due to consolidation are dominating the migration of contaminants.

Stability Investigation of a Foundation Located above Limestone Cavities Using Scaled Model Tests (석회암공동 상부 기초의 안정성 검토를 위한 모형실험 연구)

  • Kim, Jong-Woo;Heo, Seok
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.493-507
    • /
    • 2016
  • Scaled model tests were performed to investigate the stability of a foundation located above limestone cavities. Cavity shape was assumed to be an ellipse having 1/3 for the ratio of minor to major axis lengths. 12 different test models which have various depths, locations, inclinations, sizes and numbers of cavity were experimented and they were classified into 5 different groups. Crack initiation pressure, maximum pressure, deformation behaviors, failure modes and subsidence profiles of test models were obtained, and then the influences of those parameters on the foundation stability were investigated. No cavity model showed a general shear failure, whereas the models including various cavities showed the complicated three different failure modes which were only punching failure, both punching and shear failures, and double shear failure. The stability of foundation was found to be decreased as the cavity was located at shallower depth, the size and number of cavity were increased. Differential settlements appeared when the cavity was located under the biased part of foundation. Furthermore, subsidence profiles were found to depend on the distribution of underground cavities.

Design of Fire Source for Railway Vehicles and Measurement of Critical Velocity in Reduced-Scale Tunnels (축소터널 철도차량 화원 설계 및 임계속도 측정연구)

  • Park, Won-Hee;Hwang, Sun-Woo;Kim, Chang-Yong
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.59-68
    • /
    • 2020
  • In this study, the authors designed a reduced-scale railway vehicle fire, which was necessary for evaluating the fire safety of railway tunnels using a reduced model. To overcome the shortcomings of the methods used in conventional reduced-scale railway tunnel tests, the authors simulated the fire source of a railway vehicle using a methanol fire source for fire buoyancy, and a smoke cartridge for smoke visualization. Therefore, the heat release mass consumption rates of various methane trays were measured using a cone calorimeter (ISO 5660). The critical ventilation velocity in the railway tunnels was obtained using the designed fire source of the railway vehicle, which was evaluated by the measured temperature at the top of the tunnel as well as laser visualization.

Experimental Investigation about Optimum Smoke Extraction System for Underground Station (축소 모형 실험을 통한 정거장내 적정 배연방식에 관한 연구)

  • Lee, Ho-Keun;Kim, Myoung-Woo;Lee, Phill-Young;Kim, Nam-Suk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.53-59
    • /
    • 2008
  • If fire is occurred in the subway, the train must be moved to the closest station and make passengers get off the train. As a matter of fact, the Fire of Dae-gu Subway was coped with this way. But, the fire smoke extraction system of real subway stations have not designed to deal with fire of trains yet. Therefore, we have to establish a plan of station railroad for preventing from unexpected damage when the fired train comes to the station. The purpose of this study is to establish the effective smoke extraction measure that is to prevent stations from damage by the scale-down experiment.

A Study on the Model Experiment for Smoke Flow in Road Tunnel Fire (도로터널 화재발생시 연기유동에 관한 축소모형실험 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon;Kang, Se-Gu;Ahn, Kyung-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.141-149
    • /
    • 2004
  • In this study, smoke movement in tunnel fire with natural and longitudinal ventilation systems has been investigated. Reduced-scale experiments were carried out under the Froude scaling using 14.55kW fire source with a wick and experimental data is obtained with 1/18 model tunnel test. Temperature profiles were measured under the ceiling and vertical direction along the center of the tunnel and poisonous gas was measured at emergency exit point. The results show that refuge time for 225m intervals of emergency exit in case of natural ventilation systems is 256 seconds and critical velocity for sufficient back-layer prevention is 2.8m/s for fire strength of 20MW.

  • PDF

Similitude Law on Material Non-linearity for Seismic Performance Evaluation of RC Columns (RC기둥의 내진성능평가를 위한 재료비선형 상사법칙)

  • Lee, Do-Keun;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.409-417
    • /
    • 2010
  • This paper discusses a series of experiments including material improvement in order to ensure quality of grouting for the post-tensioned structure. In prestressed concrete, grouting refers to the construction procedure of filling empty space of duct enclosing with strands using cementitious material, To date, adequate quality control of the grouting has not been established in Korea because the relationship between the grouting and durability of post-tensioned structure is not well-recognized. The Korean standard does not consider the important material characteristic, wick effect, which is caused by strands in the ducts and current standard testing method unlikely quantify reasonable material segregation. As a result, the grout material, which meets the current material standards, may exhibit excessive bleeding water or shrinkage during construction. In this study, international codes and standards related to grouting were surveyed. The ratio of constituents and novel admixtures were suggested to meet equivalently with these standards. Performance of this enhanced grout was compared to common domestic grout using the international standard testing method. A series of mock-up specimens considering geometry of PC beam was constructed and grout flow pattern was observed as the grout was injected. It was observed that the grouting performance was highly influenced by material properties and filling characteristic can be varied depending on geometry of ducts.

Effect of Foundation Stiffness on Behavior of Soil-reinforced Segmental Retaining Walls (기초지반의 강성이 보강토 옹벽의 거동에 미치는 영향)

  • 유충식;김주석
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.7-19
    • /
    • 2002
  • This paper presents the results of an investigation on the effect of foundation stiffness on the performance of soil-reinforced segmental retaining walls (SRWalls). Laboratory model tests were performed using a reduced-scale physical model to capture the fundamentals of the manner in which the foundation stiffness affects the behavior of SRWalls. A series of finite-element analyses were additionally performed on a prototype wall in order to supplement the findings from the model tests and to examine full-scale behavior of SRWalls encountered in the field. The results of the present investigation indicate that lateral wall displacements significantly increase with the decrease of the foundation stiffness. Also revealed is that the increase in wall displacements is likely to be caused by the rigid body movement of the reinforced soil mass with negligible internal deformation within the reinforced soil mass. The findings from this study support the current design approaches, in which the problem concerning the foundation condition are treated in the frame work of the external stability rather than the internal stability. The implications of the findings from this study to current design approaches are discussed in detail.