• Title/Summary/Keyword: 축소모형실험장치

Search Result 45, Processing Time 0.024 seconds

Simplified Formula for Simulating Overpressure Waves in Compressed-Water-Type Launching Device (압축수 방식 사출장치 내부 과도압력파 모의를 위한 간이 식)

  • Kim, Kookhyun
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.287-290
    • /
    • 2022
  • Compressed-water-type launching devices convert the force from compressed water into force-launching underwater structures, such as torpedos and autonomous underwater vehicles. In particular, the overpressure wave in the launching tube is a critical design factor for the launching device. This paper presents a simplified formula for simulating overpressure waves in the launching tube of a compressed-water-type launching device. Scaled model experiments were performed to obtain actual measurement data of overpressure waves in a launching tube with varying piston speeds to examine the practical applicability of the simplified formula. The main factor of the simplified formula was estimated using an optimization technique. The time history of the overpressure waves was satisfactorily simulated using the estimated factor values and showed consistency with the measurement data. In addition, the trend of change by the piston speed of the estimated factors was reviewed, and the practical applicability was demonstrated. A systematic study of the factors influencing the overpressure waves in launching tubes will be possible using experimental data for more various conditions and the proposed simplified formula.

The study on the hydraulic pressure reduction of drainage shield tunnel using model test and field instrumentation (모형실험 및 현장계측을 통한 배수형 쉴드터널의 작용수압 저감 평가)

  • Kim, Dong-Min;Ma, Sang-Joon;Lee, Young-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.429-440
    • /
    • 2015
  • In this study, model test equipment was developed to evaluate the hydraulic pressure reduction in appling the drainage shield tunnel and the model test for hydraulic pressure difference was performed in case of drainage and undrained conditions. In the result of model test, increase ratio of pore water pressure was decreased in drainage condition and total stress in drainage condition was smaller than that in undrained condition, so the hydraulic pressure was reduced by the groundwater inflow into the model tunnel. In the result of field instrumentation, the hydraulic pressure in the back ground of shield tunnel was small by 11~22% in comparison with the calculated hydraulic pressure ($r_w{\cdot}H$) in same groundwater level. In the result of model test and field instrumentation, it was appeared in drainage and undrained conditions that the difference between the theoretical hydraulic pressure and the real hydraulic pressure. It shows that it is possible to apply the reduced hydraulic pressure in applying the drainage shield tunnel and to reduce the segment section due to hydraulic pressure reduction.

The Study of Development and Calibration for the Real Scale Fire Test Facility (실대형화재평가장치의 개발 및 안정화에 관한 연구)

  • Yoo, Yong-Ho;Kim, Heung-Youl;Shin, Hyun-Jun
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • The reduced scale fire test provides basic data but it is not enough to analysis real fire problem directly because there is no exact analogy theory between a real fire and the reduced scale model. Therefore, we have developed the 10 MW large scale calorimeter in order to real scale fire test. This advanced large scale calorimeter used for physical properties such as a heat release rate, based upon consumption of $O_2$ method. Using the heptane pool fire, we carried out the calibration in order to evaluation for heat release rate. It is approve that this facility has the reliability and it is capable of applying to the advance fire research in the future.

Experimental Performance Analysis using a Compact Scale Model for Shroud Tidal Current Power Generation System (쉬라우드 조류발전장치의 축소모형실험을 통한 발전 성능 분석)

  • Han, Seok Jong;Lee, Uk Jae;Park, Da In;Lee, Sang Ho;Jeong, Shin Tark;Lee, Sang Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.4
    • /
    • pp.221-228
    • /
    • 2019
  • Experimental investigation was performed to analyze the flow field characteristics and power generation performance for a shroud tidal power generation system. Electrical power output was compared with the rotational speed of the turbine blade and electric load connected to the generator for various flow velocity. As the electrical load decreased, the speed of the turbine increased rapidly and reached by about 2 times. The power output also increased remarkably with the decrease of load, and then decreased after maximum power point. In addition, the maximum power point appeared at high electrical loads as the experimental flow velocity increased. These results of the flow field characteristics and power generation performance analysis of the shroud tidal power generation system variation with the flow velocity conditions and electrical load are expected to be the basic data necessary for the development of efficient shroud tidal power generation system.

The Influence of Unbonded Prestressing Force on the Lateral Torsional Stability of Girders (비부착 긴장력이 거더의 횡비틀림 안정성에 미치는 영향)

  • Lee, Jong-Han;Lee, Kun-Joon;Kighuta, Kabuyaya
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.8-15
    • /
    • 2018
  • An experiment was carried out to evaluate the lateral torsional stability of a girder with respect to the location and magnitude of prestressing force. The test of evaluating the lateral displacement and stability of a girder could cause an unexpected result due to various parameters, such as material nonlinearity, initial geometric imperfections, prestressing force, and loading and support conditions. Therefore, a small model testing was programmed to control the various parameters and assess the lateral torsional stability with respect to the prestressing force. This study proposed and fabricated an experimental apparatus that can satisfy the loading and in-plane and out-of-plane support conditions and also contol the prestressing force. The result of the experiment showed that the lateral torsional stability increased when the prestressing force was applied in the bottom flange of the girder. As a result, this study proposed an analytical equation that can account for the effect of the prestressing force in the lateral torsional stability of a girder.

Behavior of Geosynthetic Reinforced Wall with Heat Induce Drainage Method During Rainfall (열유도 토목섬유 배수공법이 적용된 보강토 옹벽의 강우시 거동 특성)

  • Shin, Seung-min;Sin, Chun-won;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • This paper presents the results of a scale model test to the effect of heat exchanger drainage method in retaining wall of weathered granite soil. Purpose to rise in the temperature of the heat wires inside the weathered granite soil is preventing the collapse of the retaining wall and drainage smoothly moved to the drainage layer. Especially using a spray gun to simulate the rainfall since the rainfall drainage work is important for the rainfall effect on soil, find the difference about displacement of the retaining wall, change of volume water content, drainage, earth pressure and change in the strain of the geosynthetic was effected to heat exchanger within the soil. The result from applying the heat exchanger method decreased the earth pressure and displacement of the wall and increased drainage of water.

Verification of Significancebetween Experiment Devices and Scaled-down Model for the Study of PSALI (PSALI 연구를 위한 실물대 실험 장치와 축소 모형간의 유의성 검증)

  • Lee, Jin-Sook;Kim, So-Yeon;Ha, Tae-Hyun;Jung, Young-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.11-20
    • /
    • 2011
  • PSALI is referred to the supplementary lighting for the interior lighting under the daily lighting situation, and pursuant to the pertinent regulations in energy savings design standard and others in recent architecture works, the importance thereof has been increasing gradually coupled with the energy performance index (EPI), energy savings plan and the like as well as expansion of submittal and implementation policies. However, this type of PSALI studies indeed have a number of limitations since it has surrounding environmental conditions in direction, season, region, climate, time, opening rate, window area ratio, actual index, reflection rate of finishing materials and others in the architecture work as well as frequent changes in interior lighting environment for variables in daily light volume flowing into the interior, and others. Therefore, this study has analyzed existing advance research cases to produce the actual-sized model and scaled-down model, and installed the artificial lighting of LED light source possible to reproduce with same capability on both models. As a result of comparison and analysis of the artificial lighting with the key light, it has certain level of error rate from the scaled down lighting device in certain rate and actual model butit was noticeably significant within specific scope.

Experiments on Efficiency of Standing Type Waterwheel with Narrow Canal for Micro/Small Scale Hydro Power Plant (초소수력발전용 좁은 수로 고정형 수직수차 성능실험)

  • Kim, Dong-Jin;Lee, Kyong-Ho;Ahn, Kook-Chan;Kim, Bong-Hwan;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.104-108
    • /
    • 2012
  • Recently, small scale hydropower needs to be developed due to its clean, renewable and abundant energy resources. However, suitable draft of hydro-turbine body in combination with differences in wheel blade shapes is not determined yet in the range of small hydropower and it is necessary to study for the effective draft in combination with type. Therefore, watermill shaped of 250mm diameter. hydro-turbine aiming 20 watt class generator is adopted in this study because of its simple structure and high possibility of applying to small hydropower. The result shows that effective draft for the turbine body is variable concerning the size of turbine and flow rate of water. Thus, the difference of water depth between fore and aft turbine body contributes to the increase of torque, angular momentum and power output.

Design of launch pad for mitigating acoustic loads on launch vehicle at liftoff (우주발사체 발사 시 음향하중 저감을 위한 발사대 설계)

  • Tsutsumi, Seiji
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.331-341
    • /
    • 2020
  • At liftoff, launch vehicles are subject to harmful acoustic loads due to the intense acoustic waves generated by propulsion systems. Because these waves can cause electronic and mechanical components of launch vehicles and payloads to fail, predicting and mitigating acoustic loads is an important design issue. This article presents the latest information about the generation of acoustic waves and the acoustic design methods applicable to the launch pad. The development of the Japanese Epsilon solid launcher is given as an example of the new methodology for launch pad design. Computational fluid dynamics together with 1/42 scale model testing were performed for this development. Effectiveness of the launch pad design to reduce acoustic loads was confirmed by the post-flight analysis.

Leakage Localization with an Acoustic Array that Covers a Wide Area for Pipeline Leakage Monitoring in a Closed Space (닫힌 공간에서의 광역배관 누출 감시를 위한 배열센서를 이용한 누설 위치 검출)

  • Park, Choon-Su;Jeon, Jong-Hoon;Park, Jin-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.422-429
    • /
    • 2013
  • It is of great importance to localize leakages in complex pipelines for assuring their safety. A sensor array that can detect where leakages occur enables us to monitor a wide area with a relatively low cost. Beamforming is a fast and efficient algorithm to estimate where sources are, but it is generally made use of in free field condition. In practice, however, many pipelines are placed in a closed space for the purpose of safety and maintenance. This leads us to take reflected waves into account to the beamforming for interior leakage localization. Beam power distribution of reflected waves in a closed space is formulated, and spatial average is introduced to suppress the effect of reflected waves. Computer simulations and experiments ensure how the proposed method is effective to localize leakage in a closed space for structural health monitoring.