• 제목/요약/키워드: 축소된 차원

검색결과 669건 처리시간 0.034초

서포트 벡터 머신 알고리즘을 활용한 연속형 데이터의 다중인자 차원축소방법 적용 (Support vector machine and multifactor dimensionality reduction for detecting major gene interactions of continuous data)

  • 이제영;이종형
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권6호
    • /
    • pp.1271-1280
    • /
    • 2010
  • 인간의 질병과 가축의 특성에 영향을 주는 유전자들의 상호작용을 규명하는 방법으로 전통적인 통계방법들이 사용되었지만, 유전자와 같은 고차원의 데이터에는 적합하지 않았다. 따라서 다중인자 차원축소방법이 제안되었다. 다중인자 차원축소방법은 모형에 대한 가정이 필요하지 않는 비모수적 방법으로 이분형 자료에 적용 가능 하지만, 연속형 데이터에는 적용할 수 없는 단점이 있다. 따라서 본 연구에서는 일반화 분류 성능이 뛰어난 서포트 벡터 머신 알고리즘을 통해 연속형 자료를 가공하여 다중인자 차원축소방법에 적용하였다. 아울러 한우의 6번 염색체내 6개의 후보 단일염기다형성을 대상으로 연속형 자료인 실제 한우의 경제형질에 서포트 벡터 머신을 이용한 다중인자 차원축소방법을 적용함으로써 한우의 경제형질에 연관된 우수 유전자 상호작용의 조합을 규명하였다.

얼굴인식을 위해 효과적인 차원축소 방법을 사용한 특징추출 (Face Feature Extraction Using the Efficient Dimensionality Reduction Method)

  • 손병준;김귀주;이일병
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.761-764
    • /
    • 2004
  • 얼굴 데이터를 사용하는 인식 시스템에서 특징 벡터의 차원은 일반적으로 매우 크다. 패턴인식에서 차원 축소는 중요한 문제로서, 효과적인 얼굴 인식을 위한 특징 벡터의 차원 축소는 필수적이라 할 수 있다. 본 논문에서는 획득된 얼굴 데이터로부터 저 차원의 강건한 특징을 얻기 위하여 웨이블릿을 사용하고, 식별력 있는 특징을 얻기 위하여 direct linear discriminant analysis를 사용하였다. Direct linear discriminant analysis 방법을 사용하기 이전에 웨이블릿을 사용함으로써 계산 복잡도를 줄여줄 뿐만 아니라 식별력을 높여주고 효과적으로 얼굴 데이터의 차원을 축소할 수 있음을 보여 준다. 얼굴의 패턴정합을 위해서는 최근접 평균 분류기(Nearest Mean Classifier)를 사용하였으며, 최근접 평균 분류기를 사용함으로써 분류를 위한 시간을 최소화하였다. 본 논문에서 인간의 얼굴인식을 위해 제시한 방법이 얼굴패턴을 표현하는 효과적인 방법이며, 시간 및 공간의 절약이라는 측면에서 유리하다는 것을 보여준다.

  • PDF

PCA-SVM 기법을 이용한 차량의 색상 인식 (PCA-SVM Based Vehicle Color Recognition)

  • 박선미;김구진
    • 정보처리학회논문지B
    • /
    • 제15B권4호
    • /
    • pp.285-292
    • /
    • 2008
  • 색상 히스토그램은 영상의 색상 특징을 표현하기 위한 특징 벡터로 빈번히 사용되지만, 고차원의 특징 벡터를 생성하므로 효율성의 면에서 한계점을 갖고 있다. 본 논문에서는 주어진 차량 영상의 색상 히스토그램에 PCA (principal components analysis) 기법을 적용하여 특징 벡터의 차원을 축소시키는 방법을 제안한다. 차원이 축소된 특징 벡터들에 대해서는 SVM (support vector machine) 기법을 적용하여 차량 색상을 인식하기 위해 사용한다. 특징 벡터의 차원을 1/32로 축소한 결과, 차원이 축소되기 이전의 특징 벡터와 비교하여 약 1.42%의 미소한 차이로 색상 인식 성공률이 감소하였다. 또한, 색상 인식의 수행 시간은 1/31로 단축됨으로써 효율적으로 색상 인식을 수행할 수 있었다.

차원축소 방법을 이용한 평균처리효과 추정에 대한 개요 (Overview of estimating the average treatment effect using dimension reduction methods)

  • 김미정
    • 응용통계연구
    • /
    • 제36권4호
    • /
    • pp.323-335
    • /
    • 2023
  • 고차원 데이터의 인과 추론에서 고차원 공변량의 차원을 축소하고 적절히 변형하여 처리와 잠재 결과에 영향을 줄 수 있는 교란을 통제하는 것은 중요한 문제이다. 평균 처리 효과(average treatment effect; ATE) 추정에 있어서, 성향점수와 결과 모형 추정을 이용한 확장된 역확률 가중치 방법이 주로 사용된다. 고차원 데이터의 분석시 모든 공변량을 포함한 모수 모형을 이용하여 성향 점수와 결과 모형 추정을 할 경우, ATE 추정량이 일치성을 갖지 않거나 추정량의 분산이 큰 값을 가질 수 있다. 이런 이유로 고차원 데이터에 대한 적절한 차원 축소 방법과 준모수 모형을 이용한 ATE 방법이 주목 받고 있다. 이와 관련된 연구로는 차원 축소부분에 준모수 모형과 희소 충분 차원 축소 방법을 활용한 연구가 있다. 최근에는 성향점수와 결과 모형을 추정하지 않고, 차원 축소 후 매칭을 활용한 ATE 추정 방법도 제시되었다. 고차원 데이터의 ATE 추정 방법연구 중 최근에 제시된 네 가지 연구에 대해 소개하고, 추정치 해석시 유의할 점에 대하여 논하기로 한다.

CNN 기반 초분광 영상 분류를 위한 PCA 차원축소의 영향 분석 (The Impact of the PCA Dimensionality Reduction for CNN based Hyperspectral Image Classification)

  • 곽태홍;송아람;김용일
    • 대한원격탐사학회지
    • /
    • 제35권6_1호
    • /
    • pp.959-971
    • /
    • 2019
  • 대표적인 딥러닝(deep learning) 기법 중 하나인 Convolutional Neural Network(CNN)은 고수준의 공간-분광 특징을 추출할 수 있어 초분광 영상 분류(Hyperspectral Image Classification)에 적용하는 연구가 활발히 진행되고 있다. 그러나 초분광 영상은 높은 분광 차원이 학습 과정의 시간과 복잡도를 증가시킨다는 문제가 있어 이를 해결하기 위해 기존 딥러닝 기반 초분광 영상 분류 연구들에서는 차원축소의 목적으로 Principal Component Analysis (PCA)를 적용한 바 있다. PCA는 데이터를 독립적인 주성분의 축으로 변환시킬 수 있어 분광 차원을 효율적으로 압축할 수 있으나, 분광 정보의 손실을 초래할 수 있다. PCA의 사용 유무가 CNN 학습의 정확도와 시간에 영향을 미치는 것은 분명하지만 이를 분석한 연구가 부족하다. 본 연구의 목적은 PCA를 통한 분광 차원축소가 CNN에 미치는 영향을 정량적으로 분석하여 효율적인 초분광 영상 분류를 위한 적절한 PCA의 적용 방법을 제안하는 데에 있다. 이를 위해 PCA를 적용하여 초분광 영상을 축소시켰으며, 축소된 차원의 크기를 바꿔가며 CNN 모델에 적용하였다. 또한, 모델 내의 컨볼루션(convolution) 연산 방식에 따른 PCA의 민감도를 분석하기 위해 2D-CNN과 3D-CNN을 적용하여 비교 분석하였다. 실험결과는 분류정확도, 학습시간, 분산 비율, 학습 과정을 통해 분석되었다. 축소된 차원의 크기가 분산 비율이 99.7~8%인 주성분 개수일 때 가장 효율적이었으며, 3차원 커널 경우 2D-CNN과는 다르게 원 영상의 분류정확도가 PCA-CNN보다 더 높았으며, 이를 통해 PCA의 차원축소 효과가 3차원 커널에서 상대적으로 적은 것을 알 수 있었다.

단면의 차원축소/복원해석과 에너지 해방률 계산을 위한 복합재 블레이드 해석 라이브러리 개발에 대한 연구 (A Study on Composite Blade Analysis Library Development through Dimension Reduction/Recovery and Calculating Energy Release Rate)

  • 장준환;안상호
    • Composites Research
    • /
    • 제29권1호
    • /
    • pp.16-23
    • /
    • 2016
  • 본 논문에서는 블레이드 해석 라이브러리를 통해 단면해석 및 응력복원 해석 결과를 VABS와 3차원 유한요소해석모델의 결과와 비교하였다. 그리고 유한요소모델과 차원축소 모델을 가상균열 닫힘법을 이용하여 에너지 해방률을 계산하였다. 블레이드 해석 라이브러리의 구성, 입력 및 출력 형태, 차원 축소와 복원 과정을 살펴보고 이를 이용한 활용 분야를 기술하였다. 블레이드 해석 라이브러리는 박 벽 단면의 강성 행렬 비교, 3차원 유한요소 모델과 차원 축소 모델의 응력비교 그리고 에너지 해방률 계산 수치 비교연구를 통하여 검증하였다. 차원 축소와 복원해석을 통하여 블레이드 해석 라이브러리는 복합재료 블레이드의 전후처리 프로그램와 연계되어 고고도 무인기, 로터 블레이드, 풍력 블레이드 및 틸트로터 블레이드의 모델링에 활용될 수 있을 것이다.

차원 축소를 이용한 주파수 영역 오디오 신호 압축 (Dimensionality Reduction Based Frequency Domain Audio Signal Compression Method)

  • 김민제;백승권;이태진;장대영;강경옥
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2008년도 동계학술대회
    • /
    • pp.179-182
    • /
    • 2008
  • 본 논문은 오디오 부호화 및 복호화 과정에서, 주파수 영역에서 표현된 오디오 신호를 차원 축소 방법으로 압축하여 표현함으로서 오디오 부호화 효율을 증대시키고자 하는 방식에 관한 것이다. 차원 축소는 행렬을 특정한 조건을 바탕으로 두 개의 행렬의 곱으로 표현하는 방식으로, 특정 행렬로 표현된 데이터를 좀 더 작은 데이터량으로 표현하는 것뿐만 아니라 이 과정에서 데이터에 내재되어 있는 추상적인 정보까지도 함축적으로 얻어낼 수 있기 때문에, 일반적으로 데이터의 압축에 좋은 성능을 보인다. 주파수 영역으로 변환된 신호는 일반적으로 (주파수 밴드의 개수) $\times$ (전체 프레임의 개수)인 행렬로 볼 수 있으며, 이 전체 행렬을 입력으로 간주하고, 차원 축소를 수행하여 신호의 압축 효과를 얻을 수 있다. 그러나 이 경우, 행렬 전체를 입력 신호로 보아야 하기 때문에 실시간 부호화가 불가능하며, 신호 전체 길이만큼의 부호화 지연이 발생한다. 이를 해소하기 위해, 본 논문에서는 특정 개수만큼의 프레임을 묶어서 여러 번의 차원 축소를 순차적으로 수행함으로써 부호화 지연을 최소화하는 방식을 제안한다.

  • PDF

단어 공기 확률 추정을 위한 차원 축소 모델 (Dimension-Reduced Model for Word Co-occurrence Probability Estimation)

  • 김길연;최기선
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2000년도 춘계 학술대회
    • /
    • pp.137-142
    • /
    • 2000
  • 본 논문에서는 확률적 자연언어 처리에서 중요한 문제인 자료 희귀(data sparseness)의 어려움을 해결하는 새로운 방법으로 차원 축소 모델을 제시한다. 세 가지의 세부 방법이 제안되었으며 Katz의 back-off 방법의 성능을 최저로 했을 때에 비해 약 60%정도의 성능이 향상되었다. 현재까지 최고의 성능을 보이고 있는 유사도 기반의 방법에 비해서도 약 5∼20%의 성능이 향상되었다. 따라서 차원 축소 모델은 확률 추정의 새로운 방법으로 쓰일 수 있다.

  • PDF

다양한 차원 축소 기법을 적용한 문서 군집화 성능 비교 (Comparison of Document Clustering Performance Using Various Dimension Reduction Methods)

  • 조희련
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.437-438
    • /
    • 2018
  • 문서 군집화 성능을 높이기 위한 한 방법으로 차원 축소를 적용한 문서 벡터로 군집화를 실시하는 방법이 있다. 본 발표에서는 특이값 분해(SVD), 커널 주성분 분석(Kernel PCA), Doc2Vec 등의 차원 축소 기법을, K-평균 군집화(K-means clustering), 계층적 병합 군집화(hierarchical agglomerative clustering), 스펙트럼 군집화(spectral clustering)에 적용하고, 그 성능을 비교해 본다.

혈액 유전자 발현을 이용한 기계학습 기반 인지장애 예측 (Prediction of Cognitive Impairment Using Blood Gene Expression Based on Machine Learning)

  • 이승은;주우;강경태
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.61-62
    • /
    • 2022
  • 알츠하이머성 치매는 현존하는 치료법이 없어 경도인지장애 단계에서의 예방이 중요하다. 지금까지의 알츠하이머 연구는 대부분이 뇌영상 마커와 뇌척수액 마커에 집중되어 있었으며, 경도 인지 장애 단계에서의 탐색은 더욱 적었다. 이러한 점에서 혈액 유전자 발현을 이용한 경도 인지장애 단계 예측은 인지 능력에 따른 관련 유전자 식별과 접근 가능한 진단 및 치료 바이오 마커 탐색에 기여할 수 있다. 그러나 유전자 발현 데이터의 경우 환자 수에 비해 높은 차원을 가지기 때문에 과적합을 막고 질병 관련 유전자를 식별하기 위해서는 데이터에서의 의미 있는 차원만을 뽑아내는 차원 축소가 선행되야 한다. 본 연구는 유전자 발현데이터에서의 인지장애 분류를 위해 차원 축소기법과 신경망을 적용하여 인지 장애 정도를 예측하였다. 그 결과, Lasso 이용 차원축소와 신경망을 이용하여 97%의 정확도로 정상과 조기 경도 인지장애, 후기 경도 인지장애 환자를 분류 할 수 있었으며, 더 적은 차원에서도 분류가 가능했다. 이는 혈액 유전자 발현을 이용해 경도 인지장애 단계를 예측한 첫 번째 연구이며, 인지능력 저하에 따른 혈액 유전자 발현의 연관성을 확인하고 향후 조기 진단, 치료 표적 탐색에 기여한다.

  • PDF