• 제목/요약/키워드: 축방향 자기장

Search Result 66, Processing Time 0.025 seconds

A Study on Determining the Shape of Small Axial Cracks by using Magnetic Flux Leakage in NDT System for Underground Pipe (배관용 자기누설 비파괴 검사에서 축방향 미소결함의 형상 판정에 관한 연구)

  • Kim, Hui Min;Park, Gwan Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.1
    • /
    • pp.18-25
    • /
    • 2013
  • MFL PIG (Magnetic Flux Leakage Pipeline Inspection Gauge) is called the system which detects the defect for underground pipelines by using magnetic flux leakage method in nondestructive testing. This method is very suitable for testing pipelines because pipeline has high magnetic permeability. MFL PIG generates the magnetic fields to the pipe axially oriented, and detect the signal of leakage flux by using hall sensor. However, MFL PIG is hard to detect the axially oriented crack with small size because the magnetic flux leakage is not enough to be occurred. To detect the small size and axially oriented crack, the circumferential MFL (CMFL) PIG is being proposed and it can maximize the leakage flux for the axial crack by performing magnetic fields circumferentially on the pipe. In this paper, CMFL PIG is applied to detect the axially oriented crack with small size and the analysis for the distribution and the amplitude of the leakage flux signal is performed by using three dimensional finite element method. From sensing signals, the method how to determine the shape of axially oriented cracks is proposed and verified with experiment.

Design of a Magnetic Field Source for In Vivo Experiments at Extremely Low Frequency (생체 실험용 극저주파 자기장 발생 장치의 설계)

  • 김정호;김윤명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.871-877
    • /
    • 2003
  • In this paper, the design parameters for the magnetic field source at extremely low frequency are proposed. This facility can be used fur in vivo experiments with small animals to investigate biological response to the driving magnetic fields. In case that the exposed animals are motionless, the animals may be affected by the directivity of driving field. To avoid this effect, a 2-axis ELF magnetic field driving apparatus was designed. The optimum location and number of turns of each coil were obtained by numerical analysis. Applying these data to the MATLAB code(for computation), the magnetic field distribution was obtained. The calculation result fur a well-designed facility showed that the space in which the amplitude of the magnetic field lies within the 95 % of the magnetic field distribution was more than 60 % of each axis length.

Thickness Dependence of Ferromagnetic Resonance Properties in NiFe Thin Films (NiFe 박막의 두께에 따른 강자성 공명 특성 분석)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.37-42
    • /
    • 2013
  • The out-of-plane and in-plane angular dependence of ferromagnetic resonance field was measured in NiFe thin films fabricated by magnetron sputtering. The effective magnetization was obtained from the out-of-plane angular dependence of ferromagnetic resonance field, which was well agreed with calculated one. The decrease of effective magnetization with NiFe thickness was due to the surface anisotropy constant of $K_s=-0.23\;erg/cm^2$. The in-plane uniaxial anisotropy fields were obtained from the in-plane angular dependence of ferromagnetic resonance field. The easy axis of in-plane uniaxial anisotropy field was rotated to the reverse direction of applied magnetic field during sample fabrication, which was explained by the antiferromagnetic NiFeO layer at sample surface.

dispersion characteristics and RE power absorption for a mangetized plasma (자화 플라즈마의 분산특성과 유효광학계수 변화)

  • 라상호;정재성;오범환;박세근
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.285-289
    • /
    • 2000
  • It has been well known that weak axial magnetic field on the process plasma enhances plasma density. As the magnetic field helps a specific polarized EM wave mode to penetrate into the plasma, the energy transfer to the plasma enhances and the ion density increases. We have analyzed systematic change of the dispersion relation caused by the cyclotron resonance condition. This resonance occurs at near 5 gauss to provide minimum penetration depth, as known before. RF penetration depth increases abruptly beyond the magnetic field of 5 gauss, and this phenomena lessen as the collision frequency increases.

  • PDF

Effect of Magnetic Force on the Compressive and Dynamic Properties of Magnetorheological Elastomers (자기력이 자기유동 탄성체의 압축 및 동적 특성에 미치는 영향)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo;Lee, Jong-Hang
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • The compressive and dynamic properties of magnetorheological elastomers were investigated as functions of magnetizable particle volume fraction, alignment of the embedded particle and magnetic force. The specimens consisted of pure and filled silicons with randomly dispersed, longitudinal and transverse aligned magnetizable particle chains. To align the embedded particles in the elastomer, the cross-linking of the elastomer composites took place in a magnetic field. The compression and dynamic tests in the absence and the presence of different magnetic forces were carried out. The modulus and loss factor of the elastomer composites increase with increasing volume fraction at the same magnetic force. The case of longitudinal alignment shows a high modulus and loss factor when compared to the case of transverse alignment or random dispersion.

Anisotropy Effect of Exchange Bias Coupling by Unidirectional Deposition Field of NiFe/FeMn Bilayer (NiFe/FeMn 이중박막의 증착시 자기장에 의한 교환결합력 이방성 효과)

  • Park, Young-Seok;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.180-184
    • /
    • 2008
  • The relation of ferromagnet anisotropic magnetization and the antiferromagnet atomic spin configuration has been investigated for variously angles of unidirectional deposition magnetic field of FeMn layer in Corning glas/Ta(5 nm)/NiFe(7 nm)/FeMn(25 nm)/ Ta(5 nm) multilayer prepared by ion beam deposition. Three unidirectional deposition angles of FeMn layer are $0^{\circ},\;45^{\circ}$, and $90^{\circ}$, respectively. The exchange bias field ($H_{ex}$) obtained from the measuring easy axis MR loop was decreased to 40 Oe in deposition angle of $45^{\circ}$, and to 0 Oe in the angle of $90^{\circ}$. One other side hand, $H_{ex}$ obtained from the measuring hard axis MR loop was increased to 35 Oe in deposition angle of $45^{\circ}$, and to 79 Oe in the angle of $90^{\circ}$. Although the difference of uniderectional axis between ferromagnet NiFe and antiferromagnet FeMn was 90o, the strong antiferromagnetic dipole moment of FeMn caused to rotate the weak ferromagnetic dipole moment of NiFe in the interface. This result implies that one of origins for exchange coupling mechanism depends on the effect of magnetic field angle during deposition of antiferromgnet FeMn layer.

Analysis of Low Field Microwave Absorption Properties in CoFe/MnIr Thin Film (CoFe/MnIr 박막 재료에서 저자장 마이크로파 흡수 특성 분석)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.74-78
    • /
    • 2015
  • We measured the low field microwave absorption (LFMA) and ferromagnetic resonance (FMR) signals at various magnetic field angle in exchange biased CoFe/MnIr thin film. The LFMA signals were dominantly related to the magnetization rotation process. In order to analyze the LFMA signal, we calculated transverse magnetization ($M_{\tau}$) and permeability (${\mu}_{\tau}$) for CoFe/MnIr thin film by using S-W model, which magnetic parameters of exchange bias ($H_{ex}$ = 58.5 Oe) and uniaxial anisotropy field ($H_k$ = 30Oe) was obtained from FMR signals. The LFMA signal at hard axis showed similar behavior compared with that of $M_{\tau}$. As the magnetic field angle approach to the perpendicular to hard axis, the LFMA signals were depending on both of $M_{\tau}$ and ${\mu}_{\tau}$.

Effects of Electrode Configurations on the Characteristics of Axial Magnetic Fields in Vacuum Interrupter (전극형상 변화가 진공차단기내 축방향 자기장 특성에 미치는 영향)

  • Hwang, Jung-Hoon;Lee, Jong-Chul;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • The vacuum interrupter (VI) is used for medium-voltage switching circuits due to its abilities and advantages as a compacted environmental friendly circuit breaker. In general, the application of a sufficiently strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. A full understanding of the vacuum arc physics is very important since it can aid to improve the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, we have investigated the effect of changing geometrical parameters for electromagnetic behaviors of high-current vacuum arcs with two different types of AMP contacts, which are coil-type and cup-type, using a commercial finite element analysis (FEA) package, ANSYS. The present results are compared with those of MAXWELL 3D, a reliable electromagnetic analysis software, for verification.

중성 입자빔 소스의 플라즈마 limiter의 특성 연구

  • Kim, Seong-Bong;Kim, Dae-Cheol;Gu, Dong-Jin;Yu, Seok-Jae;Jo, Mu-Hyeon;Nam, Gung-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.441-441
    • /
    • 2010
  • Hyperthermal neutral beam (HNB)은 박막 성장에 필요한 에너지와 반응 입자들을 동시에 공급할 수 있기 때문에 특히, 저온에서 박막을 성장시킬 때 매우 유용하다. 이와 같은 목적으로 race track 형태의 자기장 구조를 갖고 있는 2.45 GHz electron cyclotron resonance (ECR) plasma를 이용한 HNB 소스를 개발하였다. HNB 소스에서 인출되는 입자들은 중성 입자 뿐만 아니라 이온이나 전자와 같은 하전 입자들로 구성되어 있다. 그러나 양질의 HNB를 얻기 위해서는 하전 입자들의 구성 비율을 최소화해야 한다. HNB 소스는 하전 입자의 구성 비율을 1 % ($1{\mu}A/cm^2$) 이하가 되도록 설계되었다. 이것을 위해서 영구 자석의 자기장을 이용한 plasma limiter를 설계하였다. 대부분의 전자는 limiter 앞에 형성된 자기장의 구조와 반응하여 주로 gradient B drift와 curvature drift를 통하여 차단되고, 이온은 로렌츠 힘을 받아 빔 축으로 부터 벗어나도록 하였다. Limiter의 특성을 연구하기 위해서 정전탐침을 limiter에서 빔 축 방향으로 이동시키면서 I-V 곡선과 이온 포화 전류 및 전자 포화 전류를 측정하였다. 측정 결과를 바탕으로 plasma limiter의 성능을 검증하였고 문제점을 논의하였다.

  • PDF

Relation Between Magnetization Easy Axis and Anisotropic Magnetoresistance in Permalloy Films (퍼멀로이 박막의 자화 용이축과 자기저항 변화와의 상관관계에 대한 연구)

  • Hwang, Tae-Jong;Ryu, Yeung-Shik;Kwon, Jin-Hyuk;Kim, Ki-Hyeon;Kim, Dong-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.28-31
    • /
    • 2008
  • We studied the effect of easy magnetization axis orientation with respect to the strip direction by measuring the magnetoresistance(MR), the magneto-optic Kerr effect(MOKE), and real-time domain evolution. The five strips were patterned on a single chip with the easy axis orientation of each strip relative to the longitudinal direction by around $0^{\circ}$, $18^{\circ}$, $36^{\circ}$, $54^{\circ}$ and $72^{\circ}$, respectively. The overall shape of field dependent MR was mostly governed by the anisotropy magnetoresistnace. The relative change of the longitudinal MR was significantly increased with increasing angle between the easy axis and strip direction, whereas, the transverse MR variation rate was decreased with increasing angle. Several MR steps were observed during the magnetization reversal, and the simultaneous measurement of the MOKE and the domain images identified that the MR steps were associated with evolution of the oppositely directed magnetic domain.