• Title/Summary/Keyword: 축방향 변형량

Search Result 37, Processing Time 0.025 seconds

Tapered Joint Design for Power Transmission of MW-grade Wind Turbine (MW급 풍력발전기 동력전달용 테이퍼 연결장치 설계에 관한 연구)

  • Kang, JongHun;Bae, JunWoo;On, Hanyong;Kwon, Yongchul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1183-1189
    • /
    • 2015
  • This study focuses on the design of the tapered joints of a wind power turbine. The main variables of the tapered joint are the transmitted torque, shaft diameter, contact area of the tapered ring, and tightening torque of the bolts, which applies a compressive pressure from the hub to the shaft. The stress distribution of the taper fit was calculated under axisymmetric plane strain conditions because of the small taper angle. The axial displacement of the clamp can be calculated from the radial elastic deformation and the taper angle. The stress field of each ring is obtained from the cylinder stress equation. To verify the accuracy of the calculation, finite element (FE) analysis was performed, and the results of the calculation and FE analysis were compared. The hoop stress of the tapered surface showed a discrepancy of approximately 10, but the trends of the stress distributions of each component and the relative movement obtained by FE analysis were in good agreement with the analytical calculation results.

Horizontal Strain of the Crust in Korea for the Past 80 Years from Geodetic Observations (측지측량 결과로부터 조사된 과거 80년간 한국에서 지각의 수평변형)

  • 최재화
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.49-61
    • /
    • 1997
  • 본 연구에서는 한국에서 구삼각강(1910-1915)과 정밀1차측지망(1975-1994)을 사용하여 지각변동량을 계산하고, 지체구조의 일반적인 변형패턴을 기하학적으로 조사하였다. 본 연구에서는 변형량을 계산하기 위하여 2차원의 무한소 변형모델을 설정하였으며, 수평변형량은 구좌표와 정밀1차측지망의 정밀동시강조정을 자유강조정법에 의하여 최초로 실시하여 일괄성있는 신좌표를 사용하여 계산된 측지선의 변화량으로 추정하였다. 변형설계결과로부터 1910년부터 1994년까지 누적된 변형량은 평균(1.07$\pm$0.5)$\times$10-5이고, 이로부터 년변형속도는 (0.13$\pm$0.063)$\mu$/yr 임을 알 수 있었으며, 변형의 경향을 보면 변형량이 10$\mu$ 보다 큰 값이 한반도의 동해안 지역에 분포하고 있으며, 서부쪽에는 10$\mu$이하의 값이 분포하고 있는 것으로 나타나 한반도의 동해안에서 지진의 발생빈도가 높은 것을 고려한다면 본 연구로부터 계산된 결과는 장래의 연구를 위해 중요한 데이터가 될 것이다. 본 연구에서 얻은 주변형축의 방향은 전국적으로 $77.6^{\circ}$$\pm$$13.5^{\circ}$방향임을 보여주고 있어 한반도의 지각은 ENE~WSW방향으로 압축상태에 있음을 알 수 있었으며, 이 결과는 지질학자나 지진학자들의 연구로부터 얻은 결과와 P-축의 방향이 일치하고 있고, 최대전단변형 이론과 일치하고 있는 것으로 나타났다.

  • PDF

Impact of Anisotropy in Creep and Irradiation Growth on the KOFA Zircaloy-4 Cladding tube Deformation Behavior (크립 및 조사성장 이방성이 KOFA Zircaloy-4 피복관의 변형거동에 미치는 영향)

  • Kim, Gi-Hang;Lee, Chan-Bok;Kim, Gyu-Tae
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.445-452
    • /
    • 1994
  • Three-axial deformation behavior of the Zircaloy cladding tube under the irradiation condition of the fuel in pressurized water reactor can be analyzed by the anisotropy in the creep and the irra- diation growth, which depends on the texture parameter. A methodology to evaluate the impact of the anisotropic creep and irradiation growth on the strain in each axial direction of the cladding tube has been proposed. Based on the measured strains after irradiation and predicted ones with the help of a fuel performance analysis code, it is found that a tangential strain of the cladding tube is caused mainly by the creep, whereas a axial strain of the cladding is caused mainly by the irradiation growth but with a considerable contribution of the creep at low irradiation.

  • PDF

Crack Width Calculation Based on Bond Characteristics and Cracking Behavior of Reinforced Concrete Structures (부착특성과 균열거동을 고려한 철근콘크리트 구조물의 균열폭 계산)

  • Yang, Jun-Ho;Kim, Woo;Lee, Gi-Yeol
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.944-952
    • /
    • 2009
  • This paper presents an analytical model for calculation of crack widths in reinforced concrete structures. The model is mathematically derived from the actual bond stress-slip relationships between the reinforcement and the surrounding concrete, and the relationships summarized in CEB-FIP Model Code 1990 and Eurocode 2 are employed in this study together with the numerical analysis result of a linear slip distribution along the interface at the stabilized cracking stage. With these, the actual strains of the steel and the concrete are integrated respectively along the embedment length between the adjacent cracks so as to obtain the difference in the axial elongation. The model is applied to the test results available in literatures, and the predicted values are shown to be in good agreement with the experimentally measured data.

The Stress -Strain Behavior of Sand in Torsion Shear Tests (비틀림전단시험에 의한 모래의 응력 -변형률 거동)

  • 남정만;홍원표
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.65-82
    • /
    • 1993
  • A series of torsion shear tests were performed to study the drained stress -strain behavior of medium dense Santa Monica Beach sand under various stress paths. The torque was applied to both clockwise and counterclockwise directions at the end of hollow cylinder specimen. Two clip gages had been previously used to measure the changes in wall thickness and diameter of the specimen. In this study, however, the lateral strain was determined by measuring volume changes in specimen. Specimens were prepared by the air pluviation method and gaseous carbon deozide( CO2) was used to measure precisely volumetric strain in specimen. The drained stress -strain behavior of cohesionless Boils during rotation of principal stress directions was analysed based on the results of torsion shear tests. The coupling of mal stress were applied. It was also found from the test results that the atrial strain at failure decreased with increasing value.

  • PDF

Evaluation of Cross-Sectional Damage for RC Column Subjected to Axial Loading and Steel Corrosion (철근 부식과 축방향 하중을 받는 철근-콘크리트 기둥 단면의 손상 평가)

  • Changyoung Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.476-483
    • /
    • 2023
  • The present study concerns modelling the structural behaviour for concrete structure into the crack initiation at corrosion of steels. The degradation source included the axial load and steel corrosion. A development of the rust formed on the steel surface was considered with the interfacial gap between steel and concrete. As a result, the tensile damage could occur on the surface of concrete into the cracking with no steel corrosion, which could be further developed by the increasing rust formation, while the cracking at the steel-concrete interface was mainly attributed to the compressive deformation, being restricted within the interfacial zone.

Three Dimensional Construction Stage Analysis and Deformation Monitoring of a Reinforced Concrete Highrise Building (철근콘크리트조 초고층건물의 3차원 시공단계 해석 및 시공중 변형 계측)

  • Jeong, Daegye;Yu, Eunjong;Ha, Taehun;Lee, Sungho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.573-580
    • /
    • 2014
  • In this paper, axial strains and lateral displacements of columns in a 58-story reinforced concrete building were measured using vibrating wire gauge and laser scanner, respectively, and compared with predicted values. Predictions were obtained using ASAP, which is a 3D construction stage analysis program developed based on PCA report. Comparisons indicated that columns in the middle of floor plan showed good correlation with predictions. However, the columns in the corners showed some deviations. Lateral displacement of columns between measurement and estimation showed similar trends but considerable deviations, which are seemingly caused by construction error of column faces, and inaccuracy in differential vertical displacement prediction.

Geological Structures of the Yeongchun Area, Danyang Coalfield, Korea (단양탄전, 영춘지역의 지질구조)

  • Kim, Jeong Hwan;Lee, Je Yong;Nam, Kil Hyun
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.179-190
    • /
    • 1992
  • The Yeongchun area is located at the central part of the Danyang Coalfield, where Precambrian granitoids, Cambro-Ordovician Choseon Supergroup, Carboniferous-early Triassic Pyeongan Supergroup, middle Triassic-Jurassic Bansong Group and extrusive tuffs are exposed. The rocks in the area underwent four phases of deformation, which are (a) $D_1$ : Movement of the Okdong Fault, (b) $D_2$ : Formation of NW-SE trending folds and stretching lineations, (c) $D_3$: Movement of the Gagdong Thrust Fault and associated structures of NNE-SSW trending folds, and (d) $D_4$ : E-W trending strike-slip faults and folds. During the $D_3$-event, flexural slip deformation intensively affected rocks in the area. Strain measurements show relatively low strain intensity in the area. The types of strain ellipsoid are prolate in the hangingwall area and those near to the footwall area range from plane strain to weak oblate. The oblate type is developed in the region far from the footwall area.

  • PDF

Beam-Column Element Applicable to Nonlinear Seismic Analysis (비선형 지진 해석을 위한 보-기둥 요소)

  • Kim, Kee Dong;Ko, Man Gi;Lee, Sang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.557-578
    • /
    • 1997
  • The objective of the study in this paper was to develop a beam-column element to model members with purely flexural yielding, as well as members with yielding under combined flexure and axial force during severe earthquake ground motins. The developed element can be considered as an one-component series hinge type model. It has the capability to model plastic axial deformation and changes in axial stiffness, and employs hardening rules to handle monotonic, cyclic or arbitrary loading. In general, when compared to experimental results and fiber model predictions, the element showed significantly better performance than the bilinear hinger model and could properly model the beam-column behavior of bare steel members in moment resisting frames. The developed element can more accurately predict local deformation demands and overall responses of structural systems under earthquake loadings than the bilinear hinge element.

  • PDF

Estimation of Dynamic Vertical Displacement using Artificial Neural Network and Axial strain in Girder Bridge (인공신경망과 축방향 변형률을 이용한 거더 교량의 동적 수직 변위 추정)

  • Ok, Su Yeol;Moon, Hyun Su;Chun, Pang-Jo;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1655-1665
    • /
    • 2014
  • Dynamic displacements of structures shows general behavior of structures. Generally, It is used to estimate structure condition and trustworthy physical quantity directly. Especially, measuring vertical displacement which is affected by moving load is very important part to find or identify a problem of bridge in advance. However directly measuring vertical displacement of the bridge is difficult because of test conditions and restriction of measuring equipment. In this study, Artificial Neural Network (ANN) is used to suggest estimation method of bridge displacement to overcome constrain conditions, restriction and so on. Horizontal strain and vertical displacement which are measured by appling random moving load on the bridge are applied for learning and verification of ANN. Measured horizontal strain is used to learn ANN to estimate vertical displacement of the bridge. Numerical analysis is used to acquire learning data for axis strain and vertical displacement for applying ANN. Moving load scenario which is made by vehicle type and vehicle distance time using Pearson Type III distribution is applied to analysis modeling to reflect real traffic situation. Estimated vertical displacement in respect of horizontal strain according to learning result using ANN is compared with vertical displacement of experiment and it presents vertical displacement of experiment well.