• Title/Summary/Keyword: 축방향 변형

Search Result 283, Processing Time 0.025 seconds

Effects of Axiral Restraint on flexural and Shear Behavior in High Strength Reinforced Concrete Beams (고강도 철근 코크리트 휨 부재의 휨.전단거동에 미치는 축방향 구속의 영향)

  • 양은익;고훈범;김진근;이성태
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.207-216
    • /
    • 1997
  • 본연구는 축방향 변형 구속이 고강도 콘크리트 휨부재의 휨 전단거동에 미치는 영향을 조사하기 위한 것으로, 수화열과 건조수축에 기인하는 축방향 변형과 재하에 의한 축방향 변형을 구속한 부재 및 무구속 부재에 대하여 휨파괴와 전단파괴 실험을 실시하였다. 타설 직후부터 축변형을 구속한 실험체의 재하시 강성은 재하전의 구속으로 발생한 관통균열의 영향을 받아 무구속 실험체의 강성보다 낮지만, 재하시의 축변형 구속에 따른 압축구속력의 상승으로 인하여 강성의 크기는 역전되었다 축변형이 완전히 구속된 휨부재의 휨강도는 무구속 부재보다 20%이상 상승하지만 변형능력은 감소하는 것으로 나타났으며, 재하전의 축변형 구속에 의한 관통균열(균열폭 0.1mm 미만)은 부재의 전단내력 및 전단균열 진전 형상에 영향을 미치지 않았다.

Shear Deterioration of Reinforced Concrete Beams Failing in Shear after Flexural Yielding (휨항복 후 전단 파괴하는 철근콘크리트 보의 전단성능 저하에 관한 연구)

  • 이정윤
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.466-475
    • /
    • 2001
  • The potential shear strength of reinforced concrete beams decreases after flexural yielding due to the decrease of the effective compressive strength of concrete in plastic hinge zone. A truss model considering shear deterioration in the plastic hinge zone was proposed in order to evaluate the ductile capacity of reinforced concrete beams failing in shear after flexural yielding This model can determine the potential shear strength of the beam by using a truss model. The potential shear strength gradually decreases as the increase of the axial strain of member. When the calculated potential shear strength decreases up to the flexural yielding strength, the corresponding rotation angle is defined as the ductile capacity of the beam. The predicted ductile capacity of reinforced concrete beams is shown to be in a good agreement with experimental results.

Low Cycle Fatigue Behavior of Longitudinal Reinforcement (축방향철근의 저주파 피로 거동)

  • Lee, Jae-Hoon;Ko, Seong-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.263-271
    • /
    • 2010
  • The purposes of this study is to verify the fracture characteristic of steel which is manufactured in Korea, subjected to cyclic loading. This investigation deals with the low cycle fatigue behavior of longitudinal reinforcement in reinforced concrete bridge substructure (piles and columns of piers). Eighty-one specimens of longitudinal reinforcement were tested under axial strain controlled reversed cyclic tests with strain amplitudes. The selected test variables are ratio of tension strain to compression strain, yield stress of longitudinal reinforcement, ratio of diameter of longitudinal steel to clear length of longitudinal steel, size of longitudinal steel and strain amplitudes. Low cycle fatigue behavior and low-cycle fatigue life are investigated and discussed in this paper.

Axial Strain Of Reinforced Concrete Beams Subjected to Reversed Cyclic Loading (반복하중을 받는 철근콘크리트 보의 부재 축방향 변형률에 관한 연구)

  • 이정윤
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.251-260
    • /
    • 2001
  • It is required to evaluate the axial strain of reinforced concrete beams in order to predict the ductility of reinforced concrete beams subjected to reversed cyclic loading. A model was proposed to determine the axial strains In reinforced concrete beams by analysing the behavior of reinforced concrete sections and comparing with published test results. The proposed axial strain model inclusively reflected four kinds of paths : Path 1-steel bar in an elastic stage or a unloading region; Path 2-after flexural yielding; Path 3-a slip region; and Path 4-a reversing loading region. The equations to predict the axial strains of each path were proposed. The proposed equations took into account the effects of the loading program. Comparison of axial strains between experimental results and the results from proposed equations showed to be in a good agreement with experimental results.

Evaluation of Axial Strains of Reinforced Concrete Columns (철근콘크리트 기둥의 축방향 변형률 평가)

  • Lee, Jung-Yoon;Kim, Min-Ok;Kim, Hyung-Beom
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.19-28
    • /
    • 2013
  • The longitudinal axial strain in the plastic hinge region of reinforced concrete (RC) columns influences on the structural behavior of RC structures subjected to reversed cyclic loading. This strain decreases the effective compressive strength of concrete and increases the lateral displacements between stories by causing the elongation of member length. This paper investigated the effects of the axial force on the elongation of a RC member by using a sectional analysis of RC members. The analytical and experimental results indicated that the axial force decreased the axial strain in the plastic hinge region of RC columns. In this study, a model was proposed to predict the axial strain of RC columns. The proposed model considering the effects of axial force ratio consisted of three path types ; Path 1-loading region, Path 2-unloading region, and Path 3-reversing cyclic loading region. The axal strains predicted by the proposed model were compared with the test results of RC columns with various axial force ratios, and agreed reasonably with the observed longitudinal strains.

Improvement of Medical Ultrasound Strain Image Using Lateral Motion Compensation (측방향 움직임 보상을 이용한 초음파 의료용 변형률 영상의 화질개선)

  • Park, Myung-Ki;Kwon, Sung-Jae;Jeong, Mok-Kun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.239-248
    • /
    • 2011
  • In order to improve the quality of strain images in medical ultrasound imaging, displacements need to be accurately estimated. In this paper, in order to apply one-dimensional displacement estimation methods to two-dimensional motion estimation, the axial and lateral displacements are separately estimated. In order to estimate lateral displacements, one-dimensional signals aligned in the lateral direction are converted to analytic signals, which are then crosscorrelated. Strain images are produced by first compensating two-dimensional displacements for lateral motion with lateral motion displacement estimates obtained from the proposed lateral displacement estimation algorithm and then estimating axial displacements. Both phantom and human data experiments show that the proposed method provides better signal-to-noise ratio and contrast-to-noise ratio characteristics than a conventional strain imaging method that utilizes axial displacement estimates only.

Impact of Anisotropy in Creep and Irradiation Growth on the KOFA Zircaloy-4 Cladding tube Deformation Behavior (크립 및 조사성장 이방성이 KOFA Zircaloy-4 피복관의 변형거동에 미치는 영향)

  • Kim, Gi-Hang;Lee, Chan-Bok;Kim, Gyu-Tae
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.445-452
    • /
    • 1994
  • Three-axial deformation behavior of the Zircaloy cladding tube under the irradiation condition of the fuel in pressurized water reactor can be analyzed by the anisotropy in the creep and the irra- diation growth, which depends on the texture parameter. A methodology to evaluate the impact of the anisotropic creep and irradiation growth on the strain in each axial direction of the cladding tube has been proposed. Based on the measured strains after irradiation and predicted ones with the help of a fuel performance analysis code, it is found that a tangential strain of the cladding tube is caused mainly by the creep, whereas a axial strain of the cladding is caused mainly by the irradiation growth but with a considerable contribution of the creep at low irradiation.

  • PDF

Tapered Joint Design for Power Transmission of MW-grade Wind Turbine (MW급 풍력발전기 동력전달용 테이퍼 연결장치 설계에 관한 연구)

  • Kang, JongHun;Bae, JunWoo;On, Hanyong;Kwon, Yongchul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1183-1189
    • /
    • 2015
  • This study focuses on the design of the tapered joints of a wind power turbine. The main variables of the tapered joint are the transmitted torque, shaft diameter, contact area of the tapered ring, and tightening torque of the bolts, which applies a compressive pressure from the hub to the shaft. The stress distribution of the taper fit was calculated under axisymmetric plane strain conditions because of the small taper angle. The axial displacement of the clamp can be calculated from the radial elastic deformation and the taper angle. The stress field of each ring is obtained from the cylinder stress equation. To verify the accuracy of the calculation, finite element (FE) analysis was performed, and the results of the calculation and FE analysis were compared. The hoop stress of the tapered surface showed a discrepancy of approximately 10, but the trends of the stress distributions of each component and the relative movement obtained by FE analysis were in good agreement with the analytical calculation results.

Effect of Incident Direction of Earthquake Motion on Seismic Response of Buried Pipeline (지진파 입사방향에 따른 매설관 종방향 응답특성 규명)

  • Kwak, Hyungjoo;Park, Duhee;Lee, Jangguen;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.43-51
    • /
    • 2015
  • In this paper, a 3D shell-spring model that can perform time history analysis of buried pipelines is used to evaluate the effect of the incident direction of the earthquake motion. When applying harmonic motions, it is shown that the period of vibration has pronounced influence on the response of buried pipelines. With decrease in the period, the curvature of the pipeline and corresponding response are shown to increase. To evaluate the effect of the incident angle, the motions are applied in the direction of the pipleline, horizontal, and vertical planes. When the motion is applied parallel to the direction of the pipeline, it only induces bending strains and therefore, the response is the lowest. Under motions subjected in horizontal and vertical planes at an angle of $45^{\circ}$ from the longitudinal axis of the buried pipeline, the axial deformation is shown to contribute greatly to the response of the pipelines. When imposing two-components simultaneously, the calculated response is similar to the case where only single-component is imposed. It is because one component only induces bending strain, resulting in very small increase in the response. The trend of the response is shown to be quite similar for recorded motions. Therefore, it is concluded that use of a single-component is sufficient for estimation of the longitudinal response of buried pipelines.

Dynamic Soil Stiffness in the Longitudinal Direction of Underground Structures (지중구조물의 축방향 동지반강성계수)

  • 김대상
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.149-155
    • /
    • 2000
  • 응답변위법에서 이용되는 동지반강성계수의 적절한 평가법에 대한 제안을 하였다. 현재까지의 지진피해조사 및 장기간의 지진관측사례는 지반이 공진할 때의 변형모드가 지중구조물의 피해에 가장 직접적으로 관련이 있는 것으로 알려져 있다. 따라서, 지중구조물의 축방향의 지반의 변형모드와 그 타월 진동수를 특정하여 동지반강성계수를 평가했다. 동지반강성계수는 지반의 공진상태를 상정하고 있기 때문에 결과로써 지진파의 축방행 파장의 영향을 받지 않고, 관상구주물의 반경과 표층두께의 비, 표층두께에 대한 구조물의 매설위치, 표층지반과 기반의 임피단스비 라고 하는 3개의 무차원 변수에 의해 표현된다.

  • PDF