DOI QR코드

DOI QR Code

Improvement of Medical Ultrasound Strain Image Using Lateral Motion Compensation

측방향 움직임 보상을 이용한 초음파 의료용 변형률 영상의 화질개선

  • Received : 2011.04.26
  • Accepted : 2011.06.21
  • Published : 2011.07.31

Abstract

In order to improve the quality of strain images in medical ultrasound imaging, displacements need to be accurately estimated. In this paper, in order to apply one-dimensional displacement estimation methods to two-dimensional motion estimation, the axial and lateral displacements are separately estimated. In order to estimate lateral displacements, one-dimensional signals aligned in the lateral direction are converted to analytic signals, which are then crosscorrelated. Strain images are produced by first compensating two-dimensional displacements for lateral motion with lateral motion displacement estimates obtained from the proposed lateral displacement estimation algorithm and then estimating axial displacements. Both phantom and human data experiments show that the proposed method provides better signal-to-noise ratio and contrast-to-noise ratio characteristics than a conventional strain imaging method that utilizes axial displacement estimates only.

초음파 의료용 변형률 영상에서 화질을 향상시키기 위해서는 정확한 변위를 계산하여야 한다. 본 논문에서는 2차원 방향의 움직임에 의한 변위를 구할 때 1차원 변위 계산법을 적용하기 위하여 초음파 신호의 축방향 변위와 측방향 변위를 분리하여 계산하였다. 측방향 변위를 계산하기 위하여, 측방향으로 정렬된 1차원 신호를 해석 신호 (analytic signal)로 변환한 뒤 상호상관방법을 이용하였다. 제안한 측방향 변위계산 알고리즘을 이용하여 구한 측방향 변위로 측방향 움직임을 보상한 뒤에, 다시 축방향 변위를 구하여 변형률 영상을 얻었다. 제안한 방법으로 얻은 변형률 영상은, 기존의 축방향 변위만 계산하여 얻은 변형률 영상에 비해 신호 대 잡음비와 명암대비 대 잡음비에서 향상됨을 팬텀과 인체 데이터를 이용한 실험을 통해 확인하였다.

Keywords

References

  1. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imag., vol. 20 pp. 260-274, 1998. https://doi.org/10.1177/016173469802000403
  2. L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, "Imaging of the elastic properties of tissues - A review," Ultrasound Med. Biol., vol. 22, no. 8, pp. 959-977, 1996. https://doi.org/10.1016/S0301-5629(96)00120-2
  3. J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, "Elastography: A quantitative method for imaging the elasticity of biological tissues," Ultrason. Imag., vol. 13, no. 2, pp. 111-134, 1991. https://doi.org/10.1177/016173469101300201
  4. T. Shiina, N. Nitta, E. Ueno, and J. C. Bamber, "Real time tissue elasticity imaging using the combined autocorrelation method," J. Med. Ultrason., vol. 29, pp. 119-128, 2002. https://doi.org/10.1007/BF02481234
  5. A. Pesavento, C. Perrey, M. Krueger, and H. Ermert, "A time efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 46, no. 5, pp. 1057-1067, 1999. https://doi.org/10.1109/58.796111
  6. M. O'Donnell, A. R. Skovoroda, B. M. Shapo, and S. Y. Emelianov, "Internal displacement and strain imaging using ultrasonic speckle tracking," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 41, no. 3, pp. 314-325, 1994. https://doi.org/10.1109/58.285465
  7. J. A. Jensen and P. Munk, "A new method for estimation of velocity vectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, no. 3, pp. 837-851, May 1998. https://doi.org/10.1109/58.677749
  8. X. Chen, M. J. Zohdy, S. Y. Emelianov, and M. O'Donnell, "Lateral speckle tracking using synthetic lateral phase," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 51, no. 5, pp. 540-550, May 2004. https://doi.org/10.1109/TUFFC.2004.1320827
  9. R. Zahiri-Azar and S. E. Salcudean, "Real-time estimation of lateral displacement using time domain cross correlation with prior estimates," in Proc. IEEE Ultrason. Symp., 2006, pp. 1209-1212.
  10. H. Hasegawa and H. Kanai "Phase-sensitive lateral motion estimator for measurement of artery-wall displacement - Phantom study," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 56, no. 11, pp. 2450-2462, Nov. 2009. https://doi.org/10.1109/TUFFC.2009.1332
  11. D. K. Ahn and M. K. Jeong, "Ultrasound phantom based on plastic material for elastography," J. Kor. Soc. Nondestructive Testing, vol. 29, no. 4, pp. 368-373, 2009.
  12. M. K. Jeong and S. J. Kwon, "Enhanced strain imaging using quality measure," J. Acoust. Soc. Kor., vol. 27, no. 3E, pp. 84-94, 2008.
  13. M. K. Jeong, S. J. Kwon, and M. H. Bae, "Real-time implementation of medical ultrasound strain imaging system," J. Kor. Soc. Nondestructive Testing, vol. 28, no. 2, pp. 101-111, 2008.
  14. I. Cespedes and J. Ophir, "Reduction of image noise in elastography," Ultrason. Imag., vol. 15, pp. 89-102. 1993. https://doi.org/10.1177/016173469301500202
  15. M. Bilgen and M. F. Insana, "Predicting target detectability in acoustic elastography," in Proc. IEEE Ultrason. Symp., 1997, pp. 1427-1430.

Cited by

  1. Medical Ultrasonic Elasticity Imaging Techniques vol.32, pp.5, 2012, https://doi.org/10.7779/JKSNT.2012.32.5.573