• Title/Summary/Keyword: 축계

Search Result 287, Processing Time 0.028 seconds

A Study on the Measurement and Analysis of Bearing Reaction Forces of Marine Propulsion Shafting System using Strain-Gauge (스트레인 게이지를 이용한 선박용 추진 축계의 베어링 반력 측정에 관한 연구)

  • Kim, Chul-Woo;Lee, Yong-Jin;Cho, Kwon-Hae;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.33-41
    • /
    • 2008
  • Bearing damages by shaft misalignment have frequently been happened in marine ships. Specially. after stern tube bearing damage and failure for large crude oil carriers have been reported several times. However. the bearing reaction of the after stern tube bearing cannot be measured by jack-up test due to the hull structure condition. Therefore, when the jack-up test is used for the bearing reaction measurements, the bearing reaction for the after stern tube bearing obtained from the theoretical calculation method have to be used. In this paper, the shaft alignment on the large oil crude carrier is theoretically calculated and the differences between the calculated and actual installed bearing reaction values are compared. The bearing reactions for forward stern tube bearing and intermediate bearing are calculated by the simple formula using the strain gauge bending moments obtained from the measurements. Their reliability is confirmed by comparing the bearing reactions from jack-up test and the bearing reaction for after stern tube bearing is calculated by the same test. Also, the bearing reactions on the after stern tube bearing, forward stern tube bearing and intermediate shaft bearing under all operating conditions are calculated by using the bending moments obtained from the measurements and it is confirmed that the differences of the bearing reaction for all operating conditions are caused from hull deflection. The results of this study should prove useful for the future projects of the alignment calculation including the hull deflection effectiveness.

Study on Design of Coupling Bolt for Shaft in Power Plant (발전용 축계 결합용 커플링 볼트 설계에 관한 연구)

  • Jeong, HoSeung;Son, ChangWoo;Cho, JongRae;Kim, Tae Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.707-713
    • /
    • 2013
  • Coupling bolts have replaced conventional fitted bolts in applications where the operator's safety during assembly/disassembly is of concern or where the cost of process interruption is significant. Coupling bolts have been installed on rotating flange couplings in a wide range of marine and power applications worldwide. Their use has been approved by all leading international and national classification societies and regulatory bodies. A coupling bolt is a hydraulically tensioned fitted bolt that creates a stable and rigid link between coupling flanges and simplifies assembly and disassembly. We measure the bolt dimensions for reverse engineering and study the standard of assembly-load using a mechanical formula in order to localize a coupling bolt for a shaft in a power plant. We experimentally obtain the friction coefficient and confirm the condition of bolt sets through structure analysis. We show the variation of contact pressure for the shape parameter in order to consider the result when redesigning a bolt.

Damping characteristics of high efficiency direct-coupled propeller with 10MW class (고효율 직결식 10MW급 프로펠러의 감쇠특성에 관한 연구)

  • Kim, Yang-Gon;Hwang, Sang-Jae;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.310-315
    • /
    • 2017
  • Recently constructed ships are equipped with high efficiency propeller for low fuel consumption and comfortable operation. Based on the torsional vibration analysis of the shaft system of the high efficiency propeller, using the propeller damping method considering the characteristics of previous propeller designs, a considerable amount of analysis errors are found to be generated. These errors are expected to increase as the development of high efficiency vibration propellers continues. In this paper, errors in torsional vibration analysis, in accordance with various propeller damping methods, are reviewed. In addition, a propeller damping method suitable for use at present is suggested by reviewing the comparison results of analysis and measurement values according to the propeller damping methods for vessels adopting the high efficiency direct-coupled propeller with 10MW class.

Rotordynamic Model Development and Critical Speed Estimation Through Modal Testing for the Rotor-Bearing System of a MW Class Large-Capacity Induction Motor (MW급 대용량 유도전동기 축계의 모드실험 기반 회전체 동역학 해석모델 수립 및 위험속도 예측)

  • Park, Jisu;Choi, Jae-Hak;Kim, Dong-Jun;Sim, Kyuho
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.279-289
    • /
    • 2020
  • In this paper, a method is proposed for establishing an approximate prediction model of rotor-dynamics through modal testing. In particular, the proposed method is applicable to systems that cannot be established according to conventional methods owing to the absence of information regarding the dimensions and material of the rotor-bearing system. The proposed method is demonstrated by employing a motor dynamometer driven by a 1 MW class induction motor without dimension and material information. The proposed method comprises a total of seven steps, wherein an initial model is established by incorporating approximate dimensions and material information, and the model is improved on the basis of the natural frequency characteristics of the system. During model improvement, the modification factor is introduced for adjusting the elastic modulus and shear modulus of the system. Analysis of critical speed and imbalance response indicates that the separation margin is 67% and the maximum vibration amplitude is less than the amplitude limit of 0.032 mm under the API 611 standard, which means that the motor dynamometer can stably operate at a rated speed of 1800 rpm. Hence, the obtained results validate the feasibility of the proposed method. Furthermore, for broad usage, it is necessary to accordingly apply and validate the proposed method for various rotor-bearing systems.

An Implementation of Product Data Management System for Design of Ship Propulsion System (선박 추진시스템 설계를 위한 PDM 구현)

  • Suh, Sung-Bu
    • Journal of Navigation and Port Research
    • /
    • v.35 no.6
    • /
    • pp.489-494
    • /
    • 2011
  • Present study introduces an implementation of product data management (PDM) that can be applied to the design of ship propulsion system. The PDM system is developed based on both object oriented software development environment and Open Scene Graph (OSG) library while the system architecture is modeled by the unified modeling language (UML). Suggested PDM system also integrates the modeling & simulation components required to estimate the performance of ship propulsion system as the product information is represented based on the 3-dimensional digital mock-up (DMU). Finally, functions of the implemented PDM system that is integrated with the M&S softwares are illustrated in order to suggest a practical guidance for the efficient design of ship propulsion system.

Verification of Effective Support Points of Stern Tube Bearing Using Nonlinear Elastic Multi-Support Bearing Elements (비선형 탄성 다점지지 베어링 요소를 이용한 선미관 베어링의 유효지지점 검증)

  • Choung, Joon-Mo;Choe, Ick-Heung;Kim, Kyu-Chang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.479-486
    • /
    • 2005
  • The final goal of shift alignment design is that the bearing reaction forces or mean pressures are within design boundaries for various service conditions of a ship. However, it is found that calculated bearing load can be substantially variable according to the locations of the effective support points of after sterntube bearing which are determined by simple calculation or assumption suggested by classification societies. A new analysis method for shaft alignment calculation is introduced in order to resolve these problems. Key concept of the new method is featured by adopting both nonlinear elastic and multi-support elements to simulate a bearing support Hertz contact theory is basically applied for nonlinear elastic stiffness calculation instead of the projected area method suggested by most of classification societies. Three loading conditions according to the bearing offset and the hydrodynamic moment and twelve models according to the locations of the effective support points of sterntube bearings are prepared to carry out quantitative verifications for an actual shafting system of 8000 TEU class container vessel. It is found that there is relatively large difference between assumed and calculated effective support points.

A Study on the Stern Bearing Damage and Shaft Alignment for 37K DWT Product/Chemical Tanker (37K DWT 석유화학제품 운반선의 선미관 베어링 발열 사고 및 축계정렬에 대한 연구)

  • Park, Geumsung;Koh, Changik;Chung, Jaewook;Nam, Gunsik;Chae, Junsik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.97-104
    • /
    • 2021
  • Together with the emerging of the Eco-ship, the application of large-diameter and high-efficiency propeller required more careful attention than before in the design of the shafting system. After the adoption of Environmentally Acceptable Lubricants (EAL) to the stern tube lubrication oil, a number of aft stern tube bearing accidents have been reported, and a variety of institutions have actively conducted research on the cause relationship. This study attempted to find the cause of the accident by measuring the alignment of the shafting system of a medium-sized product/chemical tanker with aft stern tube bearing damage and analyzing the reaction force of each bearing. In addition, a reasonable solution to the correction of the shaft alignment was suggested and the feasibility was reviewed. Through various measured data and analysis, the actual installation of shafting system was slightly different from the design drawing condition, but it was found that each bearing load distribution was within the allowable range. Therefore, it was confirmed that the cause of this accident was due to the dissatisfaction the misalignment slope of aft stern tube bearing rather than the effect of the bearing overload. As a solution to this cause, countermeasures such as double slope were suggested in the aft stern tube bearing, and the characteristics of EAL also seem to have an indirect effect.

High Frequency Signal Analysis of Oxidizer Pump for 7-tonf Turbopump (7톤급 터보펌프 산화제펌프의 고주파 신호 분석)

  • Bae, Joon-Hwan;Choi, Chang-Ho;Choi, Jong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.61-68
    • /
    • 2020
  • 7-tonf turbopump real-propellant tests in Naro Space Center were conducted and high-frequency signals from an accelerometer and pressure sensors installed on the casing and the inlet/outlet pipeline of LOX pump were analyzed to estimate the structural and hydrodynamic stabilities. Waterfalls, frequency spectrums and RMS(Root Mean Square) values of the measured signals were calculated and characteristic instability frequencies by the rotating cavitation and the rear floating ring seal(F.R.S) were investigated. Static pressures of the inlet/outlet pipeline and an acceleration of the pump casing are strongly affected on pressure fluctuation induced by the rear floating ring seal in the leakage path. Despite the acceleration RMS value seems totally small, the rotating-speed-related synchronous frequency affecting the shaft instability is distinctly observed in the frequency contour.

The Crystal and Molecular Structure of Acetone 4-Benzylthiosemicarbazone (Acetone 4-Benzylthiosemicarbazone의 결정 및 분자구조)

  • Park Young Ja;Ahn Choong Tai
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.73-79
    • /
    • 1985
  • The crystal and molecular structure of acetone 4-benzylthiosemicarbazone, $C_{11}H_{15}N_3S$, has been determined by the single crystal X-ray diffraction methods. The crystals are monoclinic, space group $P2_1/c$ with unit cell dimensions, a = 10.249(7), b = 11.403(9), c = 10.149(7)TEX>${\AA}$, ${\beta}$ = 90.9$(1)^0$ and z = 4. The intensities were collected on an automatic four-circle diffractometer with graphite-monochromated Mo-$K_{\alpha}$ radiation. The structure was solved by direct methods and refined by full matrix least-squares methods. The final R was 0.045 for 1554 observed reflections. S-C(8)-N(2)-N(3)-C(9)-C(10) atoms make a zigzag planar chain. There are no unusual bond lengths and angles. There are two independent hydrogen bonds in the crystal structure. One is N-H${\cdots}$S intermolecular hydrogen bond with the length of 3.555${\AA}$ and makes dimer-like units. The other is N-H${\cdots}$N intramolecular hydrogen bond with the length of 2.568${\AA}$. The structure was compared with those of other thiosemicarbazone derivatives.

  • PDF

The Effect of Additives on the Mechanical Properties of Rigid Polyurethane (경질 폴리 우레탄의 기계적물성에 미치는 첨가제의 영향)

  • Na, Seok-En;Choi, Hwan-Oh;Lee, Jeon-Kyu;Kim, Si-Young;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.783-788
    • /
    • 2012
  • Stern tube bearing is a shaft device playing important roles to reduce the friction of axial rotation and to support the weight of shaft. However, because there is no domestic producer of stern tube bering, imported stern tube bearings have many practical problems including prices, delivery and after services. This is why stern tube bearing should be localization. For the purpose of development of polyurethane resin for stern tube bearings, the effect of additives on the hardness, tensile strength and elongation of the polyurethane resin were systematically investigated. For the preliminary researches, depending on the type of curing agent, MOCA type and non-MOCA type polyurethanes were synthesized. Preliminary researches concluded that MOCA type polyurethane resin has more excellent mechanical properties than non-MPCA type for stern tube bearings that Tensile strength and Hardness of non-MOCA type investigated 23 D, 4.3 Mpa. Therefore, MOCA type polyurethane was adapted as base resin of this research. Silica, calcium carbonate and graphite were selected as additives for the enhancement of mechanical properties of polyurethane resin. Effect of the type and the dosage of these additives on the hardness, tensile strength, elongation of the polyurethane resin were experimentally examined. However, addition of calcium carbonate and graphite showed only minor effect on the hardness of the resin. Polyurethane resin with silica showed relatively excellent hardness, tensile strength and improved elongation.