법률 문서는 일반 사용자가 이해하기 어려운 용어로 이루어져 있고 특히 장문의 문서가 많아 법률시스템에 종사하는 종사자들 또한 많은 양의 문서를 읽기가 어려운 현실이다. 이에 문서 요약 방법중 딥러닝 기반의 사전학습 모델을 적용한 추출요약기반, 생성요약 방법론과 딥러닝 이전의 핵심문장 추출 방법론을 비교하여 법률용어의 요약성능에 대한 비교 평가를 수행하고자 하며 추후 연구과제로 법률문서에 특화된 요약 모델을 만들어보고자 한다.
본 논문에서는 그래프기반 문장랭킹 방식인 문장 상호 추천과 문장의 주관, 객관 성향을 이용하는 문장 성향 분석을 혼합한 새로운 요약문 추출 방법에 대해서 기술한다. 문장 상호 추천에서는 문장을 단어벡터로 변환한 후에 LSA를 이용하여 문장과 문장 사이의 유사도 점수를 계산하였다. 이렇게 얻어진 유사도와 각 단어의 희귀도(Rarity Score)를 기반으로 문장과 문장 사이의 연결 강도를 정의하여, 그래프 기반 문장 랭킹 방식을 적용 하였다. 한편, 문장성향 분석에서는 주관, 객관 성향을 결정하기 위해서 기존의 Golden Standard 단어 성향 분류를 기반으로 워드넷을 확장하여 데이터베이스를 구축하였다. 이를 통해 각 단어들의 성향을 판단하고 단어들의 평균 성향을 문장의 전체 성향에 반영하여, 주관적 성향을 띄는 문장들을 선택하였다. 최종적으로 문장 상호 추천 결과와 문장 성향 분석 결과를 혼합하여 주어진 문서로부터 요약문을 추출하였다. 요약문 추출 기능의 객관적인 성능 평가를 위하여 추출된 요약문 토대로 한 분류게임을 실시하였고, 그 결과를 MS-Word에 포함된 문서 요약 기능과 비교함으로써, 제안한 모델의 효과성을 확인하였다.
최근 스마트 디바이스의 급속한 발달과 보급으로 인하여 인터넷 웹상에서 등장하는 문서의 데이터는 하루가 다르게 증가 하고 있다. 이러한 정보의 증가로 인터넷 웹상에서는 대량의 문서가 증가하여 사용자가 해당 문서의 데이터를 이해하는데, 어려움을 겪고 있다. 그렇기 때문에 자동 문서 요약 분야에서 문서를 효율적으로 요악하기 위해 다양한 연구가 진행 되고 있다. 효율적으로 문서를 요약하기 위해 본 논문에서는 텍스트랭크 알고리즘을 이용한다. 텍스트랭크 알고리즘은 문장 또는 키워드를 그래프로 표현하며, 단어와 문장 간의 의미적 연관성을 파악하기 위해 그래프의 정점과 간선을 이용하여 문장의 중요도를 파악한다. 문장의 상위 키워드를 추출 하고 상위 키워드를 기반으로 중요 문장 추출 과정을 거친다. 중요 문장 추출 과정을 거치기 위해 단어 그룹화 과정을 거친다. 단어그룹화는 특정 가중치 척도를 이용하여 가중치 점수가 높은 문장을 선별하여 선별된 문장들을 기반으로 중요 문장을 중요 문장을 추출하여, 문서를 요약을 하게 된다. 이를 통해 기존에 연구 되었던 문서요약 방법보다 향상된 성능을 보였으며, 더욱 효율적으로 문서를 요약할 수 있음을 증명하였다.
본 논문은 음악의 코러스(chorus) 구간을 자동으로 추출하는 기법 및 시스템에 대하여 다루었다. 코러스 구간을 자동으로 추출하는 음악 요약 기술은 방대한 음악 데이터베이스에서 특정 음악 검색을 용이하게 할 수 있으며, 온라인 스트리밍 서비스에서 샘플 음악을 생성할 때 사용될 수 있다. 이를 구현하기 위해, 기존의 알고리즘들은 2차원 유사도 행렬, 확률모델, 신경망모델, 템포 특징 벡터, 클러스터링 기법 등을 적절히 활용하여 개발되었다. 본 논문에서는 음악의 오디오 핑거프린트를 추출한 후 곡 내의 오디오 핑거프린트 구간 쌍의 비트에러율을 통해 음악 요약을 추출한다. 다만, 음악 검색 솔루션에서 사용된 오디오 핑거프린트가 데이터베이스에 이미 존재할 경우에는 이를 바로 로딩한 후 비트에러율을 계산하여 음악 요약을 추출할 수 있다. 이런 방법은 이미 만들어진 데이터베이스를 변형 없이 그대로 사용할 수 있음으로써 음악 데이터베이스를 활용한 다양한 알고리즘과 솔루션의 가능성을 보여주었다. 또한, 음악의 코러스를 추출하는데 있어서 기존 방식보다 매우 뛰어난 성능을 보임을 알 수 있었다.
본 연구에서는 특정 주제분야의 텍스트를 대표할 수 있는 단어술어를 추출하고 기본문형을 형성 한 후 각 단서술어의 기본문형을 실례화하여 연결함으로써 요약문을 작성하는 자동요약시스템의 모형을 설계하고 구현하였다. 시스템은 학습과정과 요약과정을 구분되며, 학습과정에서는 술어와 격조사를 출현빈도를 이용하여 주제분야 텍스트집단을 대표하는 단어술어와 필수격 조사를 추출한 뒤 단어술어가 이루는 문장의 기본문형을 형성한다. 요약과정에서 실례화 규직을 요약 대상 문장의 구문 분석 결과에 적용하여 기본문형의 격조사와 결합될 논항을 찾아 단문을 생성하고 연결하여 요약문을 완성한다. ‘화재’및‘강도’와 관련된 신문기사를 대상으로 실험을 수행하였으며, 작성된 요약문은 단어술어가 포함된 주요 문장에서 추출한 필수 정보항목과 술어를 중심으로 생성된 문장들로서 문장간의 연결이 자연스러울 뿐 아니라 텍스트의 전체적인 의미를 표현할 수 있었다. 또한, 통계적 기법을 이용한 학습을 통해 주제영역의 확장이 가능하였다.
생의학 분야 문헌의 양이 빠르게 증가함에 따라, 생의학 연구자들이 필요로 하는 정보를 얻기가 어렵게 되었다. 이를 해결하기 위해, 인간-컴퓨터 상호작용 분야에서는 생의학 문헌 검색 시스템, 또는 생의학 문헌의 정보 추출 시스템 등에 대한 연구가 진행되고 있다. 본 논문에서는 생의학 문헌으로부터 정보를 자동으로 추출하기 위한 관계정보 추출 시스템에 대해 소개한다. 소개하는 시스템은 크게 요약 수집 모듈, 관계 추출 모듈, 관계 가시화 모듈로 구성되어 있다. 우선, 요약 수집 모듈에서는 특정 주제의 문헌들을 검색 및 수집한다. 그리고, 관계 추출 모듈에서는 수집된 문헌들에 대해서, 단백질/유전자 등의 생물학 개체를 인식하고, 구문분석을 통하여 인식된 개체들 사이의 관계를 추출한다. 마지막으로, 관계 가시화 모듈에서는 추출된 관계를 통합하여 네트워크 형태로 가시화한다. 이 시스템은 생물학 실험 이전의 문헌 기반 타당성 검사, 단백질-단백질 상호작용 또는 특정 질병과 유전자의 조절관계 분석, 또는 대용량 문헌 처리를 통한 패스웨이 데이터베이스 구축 등에 활용될 수 있다.
본 논문은 단락의 자동 구분을 통해 중요한 문장을 추출하는 요약 시스템을 제안한다. 먼저 어휘의 재출현 여부를 파악하여 어휘의 일치도와 어휘의 역할 변화와 같은 재출현 어휘의 양상 정보를 수집하고, 이를 통하여 문장 간의 긴밀도를 정량적으로 계산한다. 다음으로 측정된 문장간 긴밀도를 이용하여 사용자의 추출 범위에 따라 단락을 구분하고, 각 단락의 대표 문장을 선정하여 최종 요약문을 추출한다. 제안한 방법은 문서 제목, 문장의 위치, 수사 구조 등의 정보를 이용하지 않기 때문에 수사 구조가 자주 발견되지 않는 문서에도 적용이 가능하다.
정보 검색의 결과로 나타나는 요약문을 스니펫(snippet)이라 한다. 사용자는 자신이 원하는 정보를 얻기 위해 문서를 검색하는데, 이 때 스니펫은 사용자가 원하는 문서를 찾는데 중요한 역할을 한다. 본 논문에서는 정보검색 분야에서 높은 성능을 보이는 유사 적합성 피드백을 자동 문서 요약에 맞게 적용하여 높은 성능의 스니펫 생성 시스템을 구현한다. 우선, 사용자의 질의가 포함된 문장들을 일차적으로 요약 문장 후보로 추출한다. 그리고 추출된 문장 후보로부터 명사들을 질의 후보로 고려한다. 각 문장이 질의의 포함 여부에 따라 문장의 적합성을 판단하게 되고, 유사 적합성 피드백 확률 모델에 적용한 후 질의 후보들의 가중치를 추정하여 가중치 순위를 통해 확장할 질의들을 결정한다. 확장된 질의들과 기존의 질의들의 가중치를 합산하여 각 문장의 순위를 매기게 되고 가장 높은 순위의 문장들이 스니펫으로 제시된다. 논문에서 제안한 기법은 추가적인 핵심 질의들을 자동으로 확장하여 중요한 문장을 추출할 수 있다. 이 연구를 위해서 일반 상용 정보 검색 서비스에서 제공하는 스니펫을 수집하였고 이들의 정확도와 시스템의 정확도를 비교하였다. 실험 결과를 통해 살펴본 제안된 시스템의 성능은 상용 정보 검색기에서 제공되고 잇는 스니펫의 정확도 보다 우수한 성능을 보였다.
본 논문은 K-means과 비음수 행렬 분해(NMF)를 이용하여 주제기반의 다중문서를 요약하는 새로운 방법을 제안하였다. 제안방법은 비음수 행렬 분해를 이용하여 가중치가 부여된 용어-문장 행렬을 희소(Sparse)한 비음수 의미특징 행렬과 비음수 변수 행렬로 분해함으로써 직관적으로 이해할 수 있는 형태의 의미적 특징을 추출할 수 있고, 주제와 의미특징간의 유사도에 가중치를 부여하여 유사도는 높으나 실제 의미 없는 문장이 추출되는 것을 막는다. 또한 K-means 군집을 이용하여 문장에 포함된 노이즈를 제거함으로써 문서의 의미가 요약에 편향되게 반영하는 것을 피할 수 있고, 추출된 문장에 부여된 순위순서대로 정렬하여 보여 줌으로써 응집성을 높인다. 실험 결과 제안방법이 다른 방법에 비하여 좋은 성능을 보인다.
이 논문에서는 문장 유사도 측정 기법과 말뭉치 정보를 이용한 문서요약 시스템을 구현하였다. 문서 요약은 문서에서 문장 단위로 단어를 추출하여 문장을 단어의 벡터로 표현하고, 문서 내 단어의 출현빈도와 말뭉치 내 단어의 사용빈도를 이용하여 각 문장의 중요도를 계산한다. 그리고 중요도가 높은 상위 몇 위의 문장을 요약문장으로 추출한다. 실험 결과, 문서내 단어빈도의 중요도를 낮추고, 말뭉치내 일반 사용빈도를 단어의 가중치에 추가했을 때 가장 좋은 효율을 보였다. 또 요약하고자 하는 문서와 유사한 말뭉치를 사용 했을 때 높은 효율을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.