• Title/Summary/Keyword: 추천 시스템

Search Result 1,752, Processing Time 0.029 seconds

A Study on Improving of Access to School Library Collection through High School Students' DLS Search Behavior Analysis (고등학생의 DLS 검색행태 분석을 통한 학교도서관 자료 접근성 향상 방안 고찰)

  • Jung, Youngmi;Kang, Bong-Suk
    • Journal of Korean Library and Information Science Society
    • /
    • v.51 no.2
    • /
    • pp.355-379
    • /
    • 2020
  • Digital Library System(DLS) for the school library is a key access tool for school library materials. The purpose of this study was to find ways to improve the accessibility of materials through analysis of students' information search behavior in DLS. Data were collected through recording of 42 participants' DLS search process, and questionnaire. As a result, the search success rate and search satisfaction were found to be lower when the main purpose of DLS is simple leisure reading, information needs are relatively ambiguous, and when user experiences the complicated situations in the search process. The satisfaction level of search time sufficiency was the highest, and the search result satisfaction was the lowest. Besides, there was a need to improve DLS, such as integrated search of other library collection information, the recommendation of related materials, the print output of collection location, voice recognition through mobile apps, and automatic correction of search errors. Through this, the following can be suggested. First, DLS should complement the function of providing career information by reflecting the demand of education consumers. Second, improvements to DLS functionality to the general information retrieval system level must be made. Third, an infrastructure must be established for close cooperation between school library field personnel and DLS management authorities.

Voronoi-Based Search Scheme for Road Network Databases (도로 망 데이터베이스를 위한 보로노이 기반의 탐색 방안)

  • Kim, Dae-Hoon;Hwang, Een-Jun
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.348-357
    • /
    • 2007
  • Due to the improved performance and cost of personal mobile devices and rapid progress of wireless communication technology, the number of users who utilize these devices is increasing. This trend requires various types of services be available to users. So far, there have been many solutions provided for the shortest path problem. But, technologies which can offer various recommendation services to user depending on user’s current location are focused on Euclidean spaces rather than road network. Thus, in this paper, we extend the previous work to satisfy this requirement on road network database. Our proposed scheme requires pre-computation for the efficient query processing. In the preprocessing step, we first partition the input road network into a fixed number of Voronoi polygons and then pre-compute routing information for each polygon. In the meantime, we select the number of Voronoi polygons in proposition to the scale of road network. Through this selection, the required size of pre-computation is linearly increasing to the size of road network. Using this pre-computated information, we can process queries more quickly. Through experiments, we have shown that our proposed scheme can achieve excellent performance in terms of scheduling time and the number of visited nodes.

  • PDF

Topic Sensitive_Social Relation Rank Algorithm for Efficient Social Search (효율적인 소셜 검색을 위한 토픽기반 소셜 관계 랭크 알고리즘)

  • Kim, Young-An;Park, Gun-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.5
    • /
    • pp.385-393
    • /
    • 2013
  • In the past decade, a paradigm shift from machine-centered to human-centered and from technology-driven to user-driven has been witnessed. Consequently, Social search is getting more social and Social Network Service (SNS) is a popular Web service to connect and/or find friends, and the tendency of users interests often affects his/her who have similar interests. If we can track users' preferences in certain boundaries in terms of Web search and/or knowledge sharing, we can find more relevant information for users. In this paper, we propose a novel Topic Sensitive_Social Relationship Rank (TS_SRR) algorithm. We propose enhanced Web searching idea by finding similar and credible users in a Social Network incorporating social information in Web search. The Social Relation Rank between users are Social Relation Value, that is, for a different topics, a different subset of the above attributes is used to measure the Social Relation Rank. We observe that a user has a certain common interest with his/her credible friends in a Social Network, then focus on the problem of identifying users who have similar interests and high credibility, and sharing their search experiences. Thus, the proposed algorithm can make social search improve one step forward.

Application Profile for Multi-Cultural Content Based on KS X 7006 Metadata for Learning Resources (다문화 구성원을 위한 학습자원 메타데이터 응용표준 프로파일)

  • Cho, Yong-Sang;Woo, Ji-Ryung;Noh, KyooSung
    • Journal of Digital Convergence
    • /
    • v.15 no.4
    • /
    • pp.91-105
    • /
    • 2017
  • Korea is rapidly becoming a multicultural society in recent years, and the number of multicultural families in 2015 exceeds 3.5% and 800,000. Also, as international marriage rate exceeds 10% by 2016, the number of multicultural families is expected to steadily increase. This study is a design of a metadata application profile as part of the foundation for providing learning resources and content tailored to the needs and preferences of married immigrant women and multicultural family members who need to adapt to Korean society. In order to verify the necessity of the research, we conducted an in-depth interview by screening consumer groups, and analyzed the relevant international and Korean national standards as de-jure standards for the design of metadata standard profiles. Then, we analyzed the contents characteristics for multicultural members, and organized the necessary metadata elements into profiles. We defined the mandatory/optional conditions to reflect the needs of content providers. This study is meaningful in that the study analyzes the educational needs of married immigrant women and presents the necessary metadata standards to develop and service effective educational content, such as korean-to-korean conversion system, personalized learning contents recommendation service, and learning management system.

Personal Training Suggestion System based Hybrid App (하이브리드 앱 기반의 퍼스널 트레이닝 제안 시스템)

  • Kye, Min-Seok;Lee, Hye-Soo;Park, Sung-Hyun;Kim, Dong-Ok;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.665-667
    • /
    • 2014
  • Wellness is IT fused with the user manage and maintain the health of a service can help you. If you are using an existing Fitness Center to yourself by choosing appliances that fit with the risk of injury in order to learn how the efficient movement had existed for a long time was needed. To resolve, use the personal training but more expensive cost of people's problems, and shown again in the habit of exercising alone will have difficulty. This paper provides a variety of smart phones based on a hybrid app with compatibility with the platform and personalized training market system. Users of the Fitness Center is built into smart phones in the history of their movement sensors or transmits to the Web by typing directly. This is based on exercise programs tailored to users via the training market. Personal training marketplace has a variety of users, check the history of this movement he can recommend an exercise program for themselves can be applied by selecting the. This provides users with the right exercise program can do long-term exercise habits can be proactive and goal setting.

  • PDF

YouTube Video Content Analysis: Focusing on Korean Dance Videos (유튜브(YouTube) 영상 콘텐츠 분석: 국내 무용 영상을 중심으로)

  • Suejung Chae;Jihae Suh
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.1-13
    • /
    • 2023
  • The widespread adoption of smartphones and advancements in internet technology have notably shifted content consumption habits toward video. This research aims to dissect the nature of videos posted on YouTube, the global video-sharing platform, to understand the characteristics of both produced and preferred content. For this study, dance was chosen as a specific subject from a variety of video categories. Data on YouTube videos associated with the term "dance" was compiled over three years, from 2019 to 2021. The investigation revealed a clear distinction between the types of dance videos frequently uploaded to YouTube and those that receive a high number of views. The empirical analysis of this study indicates a viewer preference for vlogs that provide insights into the daily lives of dance students, as well as for purpose-driven videos, such as those highlighting dance exam preparations or school dance events. Notably, the vlogs that attract the most attention are typically created by dance students at the college or secondary school level, rather than by professionals. Although the study was focused on dance, its methodologies can be applied to different subjects. These insights are expected to contribute to the development of a recommendation system that aids content creators in effectively targeting their productions.

A Study on the Revitalization of Tourism Industry through Big Data Analysis (한국관광 실태조사 빅 데이터 분석을 통한 관광산업 활성화 방안 연구)

  • Lee, Jungmi;Liu, Meina;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.149-169
    • /
    • 2018
  • Korea is currently accumulating a large amount of data in public institutions based on the public data open policy and the "Government 3.0". Especially, a lot of data is accumulated in the tourism field. However, the academic discussions utilizing the tourism data are still limited. Moreover, the openness of the data of restaurants, hotels, and online tourism information, and how to use SNS Big Data in tourism are still limited. Therefore, utilization through tourism big data analysis is still low. In this paper, we tried to analyze influencing factors on foreign tourists' satisfaction in Korea through numerical data using data mining technique and R programming technique. In this study, we tried to find ways to revitalize the tourism industry by analyzing about 36,000 big data of the "Survey on the actual situation of foreign tourists from 2013 to 2015" surveyed by the Korea Culture & Tourism Research Institute. To do this, we analyzed the factors that have high influence on the 'Satisfaction', 'Revisit intention', and 'Recommendation' variables of foreign tourists. Furthermore, we analyzed the practical influences of the variables that are mentioned above. As a procedure of this study, we first integrated survey data of foreign tourists conducted by Korea Culture & Tourism Research Institute, which is stored in the tourist information system from 2013 to 2015, and eliminate unnecessary variables that are inconsistent with the research purpose among the integrated data. Some variables were modified to improve the accuracy of the analysis. And we analyzed the factors affecting the dependent variables by using data-mining methods: decision tree(C5.0, CART, CHAID, QUEST), artificial neural network, and logistic regression analysis of SPSS IBM Modeler 16.0. The seven variables that have the greatest effect on each dependent variable were derived. As a result of data analysis, it was found that seven major variables influencing 'overall satisfaction' were sightseeing spot attraction, food satisfaction, accommodation satisfaction, traffic satisfaction, guide service satisfaction, number of visiting places, and country. Variables that had a great influence appeared food satisfaction and sightseeing spot attraction. The seven variables that had the greatest influence on 'revisit intention' were the country, travel motivation, activity, food satisfaction, best activity, guide service satisfaction and sightseeing spot attraction. The most influential variables were food satisfaction and travel motivation for Korean style. Lastly, the seven variables that have the greatest influence on the 'recommendation intention' were the country, sightseeing spot attraction, number of visiting places, food satisfaction, activity, tour guide service satisfaction and cost. And then the variables that had the greatest influence were the country, sightseeing spot attraction, and food satisfaction. In addition, in order to grasp the influence of each independent variables more deeply, we used R programming to identify the influence of independent variables. As a result, it was found that the food satisfaction and sightseeing spot attraction were higher than other variables in overall satisfaction and had a greater effect than other influential variables. Revisit intention had a higher ${\beta}$ value in the travel motive as the purpose of Korean Wave than other variables. It will be necessary to have a policy that will lead to a substantial revisit of tourists by enhancing tourist attractions for the purpose of Korean Wave. Lastly, the recommendation had the same result of satisfaction as the sightseeing spot attraction and food satisfaction have higher ${\beta}$ value than other variables. From this analysis, we found that 'food satisfaction' and 'sightseeing spot attraction' variables were the common factors to influence three dependent variables that are mentioned above('Overall satisfaction', 'Revisit intention' and 'Recommendation'), and that those factors affected the satisfaction of travel in Korea significantly. The purpose of this study is to examine how to activate foreign tourists in Korea through big data analysis. It is expected to be used as basic data for analyzing tourism data and establishing effective tourism policy. It is expected to be used as a material to establish an activation plan that can contribute to tourism development in Korea in the future.

Analysis of promising countries for export using parametric and non-parametric methods based on ERGM: Focusing on the case of information communication and home appliance industries (ERGM 기반의 모수적 및 비모수적 방법을 활용한 수출 유망국가 분석: 정보통신 및 가전 산업 사례를 중심으로)

  • Jun, Seung-pyo;Seo, Jinny;Yoo, Jae-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.175-196
    • /
    • 2022
  • Information and communication and home appliance industries, which were one of South Korea's main industries, are gradually losing their export share as their export competitiveness is weakening. This study objectively analyzed export competitiveness and suggested export-promising countries in order to help South Korea's information communication and home appliance industries improve exports. In this study, network properties, centrality, and structural hole analysis were performed during network analysis to evaluate export competitiveness. In order to select promising export countries, we proposed a new variable that can take into account the characteristics of an already established International Trade Network (ITN), that is, the Global Value Chain (GVC), in addition to the existing economic factors. The conditional log-odds for individual links derived from the Exponential Random Graph Model (ERGM) in the analysis of the cross-border trade network were assumed as a proxy variable that can indicate the export potential. In consideration of the possibility of ERGM linkage, a parametric approach and a non-parametric approach were used to recommend export-promising countries, respectively. In the parametric method, a regression analysis model was developed to predict the export value of the information and communication and home appliance industries in South Korea by additionally considering the link-specific characteristics of the network derived from the ERGM to the existing economic factors. Also, in the non-parametric approach, an abnormality detection algorithm based on the clustering method was used, and a promising export country was proposed as a method of finding outliers that deviate from two peers. According to the research results, the structural characteristic of the export network of the industry was a network with high transferability. Also, according to the centrality analysis result, South Korea's influence on exports was weak compared to its size, and the structural hole analysis result showed that export efficiency was weak. According to the model for recommending promising exporting countries proposed by this study, in parametric analysis, Iran, Ireland, North Macedonia, Angola, and Pakistan were promising exporting countries, and in nonparametric analysis, Qatar, Luxembourg, Ireland, North Macedonia and Pakistan were analyzed as promising exporting countries. There were differences in some countries in the two models. The results of this study revealed that the export competitiveness of South Korea's information and communication and home appliance industries in GVC was not high compared to the size of exports, and thus showed that exports could be further reduced. In addition, this study is meaningful in that it proposed a method to find promising export countries by considering GVC networks with other countries as a way to increase export competitiveness. This study showed that, from a policy point of view, the international trade network of the information communication and home appliance industries has an important mutual relationship, and although transferability is high, it may not be easily expanded to a three-party relationship. In addition, it was confirmed that South Korea's export competitiveness or status was lower than the export size ranking. This paper suggested that in order to improve the low out-degree centrality, it is necessary to increase exports to Italy or Poland, which had significantly higher in-degrees. In addition, we argued that in order to improve the centrality of out-closeness, it is necessary to increase exports to countries with particularly high in-closeness. In particular, it was analyzed that Morocco, UAE, Argentina, Russia, and Canada should pay attention as export countries. This study also provided practical implications for companies expecting to expand exports. The results of this study argue that companies expecting export expansion need to pay attention to countries with a relatively high potential for export expansion compared to the existing export volume by country. In particular, for companies that export daily necessities, countries that should pay attention to the population are presented, and for companies that export high-end or durable products, countries with high GDP, or purchasing power, relatively low exports are presented. Since the process and results of this study can be easily extended and applied to other industries, it is also expected to develop services that utilize the results of this study in the public sector.

An Analysis of the Comparative Importance of Systematic Attributes for Developing an Intelligent Online News Recommendation System: Focusing on the PWYW Payment Model (지능형 온라인 뉴스 추천시스템 개발을 위한 체계적 속성간 상대적 중요성 분석: PWYW 지불모델을 중심으로)

  • Lee, Hyoung-Joo;Chung, Nuree;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.75-100
    • /
    • 2018
  • Mobile devices have become an important channel for news content usage in our daily life. However, online news content readers' resistance to online news monetization is more serious than other digital content businesses, such as webtoons, music sources, videos, and games. Since major portal sites distribute online news content free of charge to increase their traffics, customers have been accustomed to free news content; hence this makes online news providers more difficult to switch their policies on business models (i.e., monetization policy). As a result, most online news providers are highly dependent on the advertising business model, which can lead to increasing number of false, exaggerated, or sensational advertisements inside the news website to maximize their advertising revenue. To reduce this advertising dependencies, many online news providers had attempted to switch their 'free' readers to 'paid' users, but most of them failed. However, recently, some online news media have been successfully applying the Pay-What-You-Want (PWYW) payment model, which allows readers to voluntarily pay fees for their favorite news content. These successful cases shed some lights to the managers of online news content provider regarding that the PWYW model can serve as an alternative business model. In this study, therefore, we collected 379 online news articles from Ohmynews.com that has been successfully employing the PWYW model, and analyzed the comparative importance of systematic attributes of online news content on readers' voluntary payment. More specifically, we derived the six systematic attributes (i.e., Type of Article Title, Image Stimulation, Article Readability, Article Type, Dominant Emotion, and Article-Image Similarity) and three or four levels within each attribute based on previous studies. Then, we conducted content analysis to measure five attributes except Article Readability attribute, measured by Flesch readability score. Before conducting main content analysis, the face reliabilities of chosen attributes were measured by three doctoral level researchers with 37 sample articles, and inter-coder reliabilities of the three coders were verified. Then, the main content analysis was conducted for two months from March 2017 with 379 online news articles. All 379 articles were reviewed by the same three coders, and 65 articles that showed inconsistency among coders were excluded before employing conjoint analysis. Finally, we examined the comparative importance of those six systematic attributes (Study 1), and levels within each of the six attributes (Study 2) through conjoint analysis with 314 online news articles. From the results of conjoint analysis, we found that Article Readability, Article-Image Similarity, and Type of Article Title are the most significant factors affecting online news readers' voluntary payment. First, it can be interpreted that if the level of readability of an online news article is in line with the readers' level of readership, the readers will voluntarily pay more. Second, the similarity between the content of the article and the image within it enables the readers to increase the information acceptance and to transmit the message of the article more effectively. Third, readers expect that the article title would reveal the content of the article, and the expectation influences the understanding and satisfaction of the article. Therefore, it is necessary to write an article with an appropriate readability level, and use images and title well matched with the content to make readers voluntarily pay more. We also examined the comparative importance of levels within each attribute in more details. Based on findings of two studies, two major and nine minor propositions are suggested for future empirical research. This study has academic implications in that it is one of the first studies applying both content analysis and conjoint analysis together to examine readers' voluntary payment behavior, rather than their intention to pay. In addition, online news content creators, providers, and managers could find some practical insights from this research in terms of how they should produce news content to make readers voluntarily pay more for their online news content.

Analysis of shopping website visit types and shopping pattern (쇼핑 웹사이트 탐색 유형과 방문 패턴 분석)

  • Choi, Kyungbin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.85-107
    • /
    • 2019
  • Online consumers browse products belonging to a particular product line or brand for purchase, or simply leave a wide range of navigation without making purchase. The research on the behavior and purchase of online consumers has been steadily progressed, and related services and applications based on behavior data of consumers have been developed in practice. In recent years, customization strategies and recommendation systems of consumers have been utilized due to the development of big data technology, and attempts are being made to optimize users' shopping experience. However, even in such an attempt, it is very unlikely that online consumers will actually be able to visit the website and switch to the purchase stage. This is because online consumers do not just visit the website to purchase products but use and browse the websites differently according to their shopping motives and purposes. Therefore, it is important to analyze various types of visits as well as visits to purchase, which is important for understanding the behaviors of online consumers. In this study, we explored the clustering analysis of session based on click stream data of e-commerce company in order to explain diversity and complexity of search behavior of online consumers and typified search behavior. For the analysis, we converted data points of more than 8 million pages units into visit units' sessions, resulting in a total of over 500,000 website visit sessions. For each visit session, 12 characteristics such as page view, duration, search diversity, and page type concentration were extracted for clustering analysis. Considering the size of the data set, we performed the analysis using the Mini-Batch K-means algorithm, which has advantages in terms of learning speed and efficiency while maintaining the clustering performance similar to that of the clustering algorithm K-means. The most optimized number of clusters was derived from four, and the differences in session unit characteristics and purchasing rates were identified for each cluster. The online consumer visits the website several times and learns about the product and decides the purchase. In order to analyze the purchasing process over several visits of the online consumer, we constructed the visiting sequence data of the consumer based on the navigation patterns in the web site derived clustering analysis. The visit sequence data includes a series of visiting sequences until one purchase is made, and the items constituting one sequence become cluster labels derived from the foregoing. We have separately established a sequence data for consumers who have made purchases and data on visits for consumers who have only explored products without making purchases during the same period of time. And then sequential pattern mining was applied to extract frequent patterns from each sequence data. The minimum support is set to 10%, and frequent patterns consist of a sequence of cluster labels. While there are common derived patterns in both sequence data, there are also frequent patterns derived only from one side of sequence data. We found that the consumers who made purchases through the comparative analysis of the extracted frequent patterns showed the visiting pattern to decide to purchase the product repeatedly while searching for the specific product. The implication of this study is that we analyze the search type of online consumers by using large - scale click stream data and analyze the patterns of them to explain the behavior of purchasing process with data-driven point. Most studies that typology of online consumers have focused on the characteristics of the type and what factors are key in distinguishing that type. In this study, we carried out an analysis to type the behavior of online consumers, and further analyzed what order the types could be organized into one another and become a series of search patterns. In addition, online retailers will be able to try to improve their purchasing conversion through marketing strategies and recommendations for various types of visit and will be able to evaluate the effect of the strategy through changes in consumers' visit patterns.