• Title/Summary/Keyword: 추진시스템(propulsion system)

Search Result 999, Processing Time 0.027 seconds

Thermodynamic Analysis of Trilateral Cycle Applied to Exhaust Gas of Marine Diesel Engine (선박용 디젤엔진의 배기가스에 적용된 3 변 사이클의 열역학적 분석)

  • Choi, Byung-Chul;Kim, Young-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.937-944
    • /
    • 2012
  • The thermodynamic characteristics of a trilateral cycle with water as a working fluid have been theoretically investigated for an electric generation system to recover the waste heat of the exhaust gas from a diesel engine used for the propulsion of a large ship. As a result, when a heat source was given, the efficiencies of energy and exergy were maximized by the specific conditions of the pressure and mass flow rate for the working fluid at the turbine(expander) inlet. In this case, as the condensation temperature increased, the volume expansion ratio of the turbine could be reduced properly; however, the exergy loss of the heat source and exergy destruction of the condenser increased. Therefore, in order to recover the waste exergy from the topping cycle, the combined cycle with a bottoming cycle such as an organic Rankine cycle, which is utilized at relatively low temperatures, was found to be useful.

An Evaluation on Rupture Behavior of Nozzle Closure in Multi-Nozzle System (멀티노즐시스템의 노즐마개 파열 거동 분석)

  • Ro, Young-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.745-751
    • /
    • 2014
  • For the multi-nozzle propulsion, the rupture pressure of nozzle closure has an effect on the initial strain rate of ignition. Moreover, the deviation of rupture pressure for each nozzle closure leads to side forces which can disturb the attitude control of rocket. When designed, it should be considered whether nozzle closures are ruptured equally and exactly in the intented pressure. In this paper, the rupture behavior is analyzed by analytical and experimental methods for plate and "+" notched nozzle closures. The rupture pressure and deviation for operating temperature, whether notched or not and notched directions are analyzed. This paper provides a comparison between rupture pressure prediction of finite elements method which tool is Abaqus/Explicit and results of the rupture test. Jonson-Cook shear failure model which corresponds to the damage initiation criterion were used in this simulation.

Three-dimensional Flow and Aerodynamic Loss Downstream of First-Stage Turbine Vane Cascade (터빈 제1단 정익 익렬 하류에서의 3차원 유동 및 압력손실)

  • Jeong, Jae Sung;Bong, Seon Woo;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.521-529
    • /
    • 2017
  • Three-dimensional flow characteristics within a high-acceleration first-stage turbine vane passage has been investigated in a newly-built vane cascade for propulsion. The result shows that there is a strong favorable pressure gradient on the vane pressure surface. On its suction surface, however, there exists not only a much stronger favorable pressure gradient than that on the pressure surface upstream of the mid-chord but also a subsequent adverse pressure gradient downstream of it. By employing two different oil-film methods with upstream coating and full-coverage coating, a four-vortex model horseshoe vortex system can be identified ahead of each leading edge in the cascade, and the separation line of inlet boundary layer flow as well as the separation line of re-attached flow is provided as well. In addition, basic flow data such as secondary flow, aerodynamic loss, and flow turning angle downstream of the cascade are obtained.

Study on the Change of Physical Characteristics by Polarity and Additives of SiC DPF Binder for Diesel Engine Application (디젤엔진에 적용하기 위한 SiC DPF용 접합제의 극성 및 첨가물에 따른 물리적 특성 변화에 관한 연구)

  • Kim, Jinwon;Ryu, Younghyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.974-981
    • /
    • 2019
  • Fine dust has become a significant social problem. Diesel engines are used as the main propulsion power source in ships. This study introduces a diesel particulate filter (DPF) that is used as an exhaust after-treatment system for diesel engines to reduce particulate matter known as diesel fine dust. Two materials are used for the DPF: Cordierite and silicon carbide (SiC). In this study, to improve the physical properties of the binder used in the SiC DPF, cordialite was used instead of the SiC-based materials used as the conventional binder to evaluate the thermal durability against high-temperature deformation through the change of the coefficient of thermal expansion. In addition, the physical properties of the silica sol, as a main component of the base coating solution for determining the bond between the binder and the segment, were confirmed. Based on this, the change effect of the binder physical properties was confirmed through experiments by either adding a silane coupling agent or SiC to increase the reactivity of the silica sol.

The Impact Analysis of the Leakage Scenario in the Tank of Hydrogen Fuel Cell Vessel (수소연료전지선박의 탱크 내 누출시나리오에 따른 영향분석)

  • Sang-Jin Lim ․;Yoon-Ho Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.13-22
    • /
    • 2023
  • As an alternative to environmental pollution generated from fossil fuels currently in use, research is being actively conducted to use hydrogen that does not cause air pollution. As fire and explosion accidents caused by hydrogen leakage have occurred until recently, research on safety is needed to commercialize hydrogen on ships, which are special environments. In this study, a seasonal alternative scenario for each season and the worst scenario were assumed in the event of a leakage accident while a hydrogen fuel cell propulsion ship equipped with a hydrogen storage tank was navigating at JangSaengPo port in Ulsan. In order to consider environmental variables, the damage impact range was derived through ALOHA and probit analysis based on the annual average weather data for 2021 by the Korea Meteorological Administration and on geographic information data from the National Statistical Office. Radiation showed a wider damage range than that of Overpressure and Flame in both the alternative and worst-case scenarios, and as a result of probit analysis, a fatality rate of 99% was confirmed in all areas.

Analysis of Cable Protection of Duct in Lightning and HIRF Environment of UAM Aircraft and a Proposal for Certification Guidance (UAM 항공기 낙뢰 및 HIRF 환경에서 덕트의 케이블 보호 성능 분석 및 인증기술에 관한 연구)

  • Kim, Dong-Hyeon;Jo, Jae-Hyeon;Kim, Yun-Gon;Lee, Hakjin;Myong, Rho-Shin
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.23-34
    • /
    • 2022
  • Cities around the world are increasing their demand for Urban Air Mobility (UAM) aircraft due to traffic congestion with population concentration. Aircraft with various shapes depending on fixed-wing and propulsion systems, are being prepared for commercialization. Airworthiness certification is required as it is a manned transportation vehicle that flies in the city center and transports people on board. UAM aircraft are vulnerable to lightning and HIRF environments due to the increasing use of composite materials, the use of electric motors, and use of electronic equipment. Currently, the development of certification technology, guidelines, and requirements in lightning and HIRF environments for UAM aircraft is incomplete. In this study, the certification procedures for lightning and HIRF indirect impacts of rotorcraft shown in AC 20-136B and AC 20-158A issued by the Federal Aviation Administration (FAA), were verified and applied to the computerized simulation of UAM aircraft. The impact of lightning and HIRF on ducted fan UAM aircraft was analyzed through computerized simulation, and the basis for establishing practical guidelines for certification of UAM aircraft to be operated in the future is presented.

Development of the Spark Torch Igniter for the 450 N-scale Methane-Oxygen Rocket Engine (450 N급 메탄-산소 로켓 엔진을 위한 스파크 토치 점화기 개발)

  • Sinyoung Park;Edam Choi;Eunjo Han;Jin Geon Kim;Dahae Lee;Eunkwang Lee;Minwoo Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.53-63
    • /
    • 2024
  • Adopting an engine igniter with high efficiency and ignition performance is essential for reliable operation of liquid rocket engines. In this study, we developed a spark torch igniter for a 450 N-scale methane-oxygen liquid rocket engine by conducting numerical analyses, igniter manufacturing and validation. Specifically, we conducted a parametric study for maximizing the enthalpy at the igniter exit, specifically by adjusting the mass flow rate, nozzle area ratio, fuel-oxidizer mixture ratio, and the igniter length-to-diameter. The heat transferred via the igniter nozzle exit was computed using 3-dimensional numerical simulations. We also manufactured and tested the igniter based on a deduced design to confirm ignition performance of the designed spark torch igniter. The igniter developed through this study could contribute to the development of practical propulsion systems such as upper-stage engines of small launch vehicles.

Low price type inspection and monitoring system of lithium ion batteries for hybrid vessels (하이브리드 선박용 리튬 배터리의 저가형 감시시스템 구현)

  • Kwon, Hyuk-joo;Kim, Min-kwon;Lee, Sung-geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.28-33
    • /
    • 2016
  • Batteries are used for main power engine in the fields such as mobiles, electric vehicles and unmanned submarines, for starter and lamp driver in general automotive, for emergency electric source in ship. These days, lead-acid and the lithium ion batteries are increasingly used in the fields of the secondary battery, and the lead-acid battery has a low price and safety comparatively, The lithium ion battery has a high energy density, excellent output characteristics and long life, whereas it has the risk of explosion by reacting with moisture in the air. But Recently, due to the development of waterproof, fireproof, dustproof technology, lithium batteries are widely used, particularly, because their usages are getting wider enough to be used as a power source for hybrid ship and electric propulsion ship, it is necessary to manage more strictly. Hybrid ship has power supply units connected to the packets to produce more than 500kWh large power source, and therefore, A number of the communication modules and wires need to implement the wire inspection and monitor system(WIIMS) that allows monitoring server to transmit detecting voltage, current and temperature data, which is required for the management of the batteries. This paper implements a low price type wireless inspection and monitoring system(WILIMS) of the lithium ion battery for hybrid vessels using BLE wireless communication modules and power line modem( PLM), which have the advantages of low price, no electric lines compared to serial communication inspection systems(SCIS). There are state of charge(SOC), state of health(SOH) in inspection parts of batteries, and proposed system will be able to prevent safety accidents because it allows us to predict life time and make a preventive maintenance by checking them at regular intervals.

Technology for AR Dry Storage of Spent Fuel (원전부지내 사용후핵연료 건식저장기술 분석)

  • Lee, Heung-Young;Yoon, Suk-Jung;Lee, Ik-Hwan;Seo, Ki-Seog
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.313-327
    • /
    • 1996
  • As an at-reactor(AR) storage method o( spent fuel, there are horizontal concrete module type, metal storage cask type, concrete storage cask type, dual purpose (transportation and storage) cask type and multi-purpose (transportation, storage and disposal) cask type. All other types except multi-purpose one have been already used for AR dry storage of spent fuels after obtaining operation license in various foreign countries. Also the development of multi-purpose type has been continued for operation license. In America, Japan, Germany, Canada, Spain, Switzerland, and Czech Republic, etc., AR dry storage facilities are under operation or on propulsion, and spent fuels are transported to interim storage facility or reprocessing plant after dry storage at reactor temporarily. At Wolsung site, in case of Korea, concrete silo type has already been introduced, and it is believed to be inevitable to store spent fuels at reactor temporarily, considering the reality that storage capacity of spent fuel is approaching to the limit in some nuclear power plants. In this report, the system characteristics, design requirements, technical standards and status of AR storage system, which is suitable for domestic site such as Kori, have been studied. In most cases, the licensed period of storage cask is limited up to 20 years and the integrity of material and maintenance of leaktightness are required during the whole service life.

  • PDF