• Title/Summary/Keyword: 추진기 소음

Search Result 41, Processing Time 0.03 seconds

Design and Manufacturing of the Diffuser with Water Injection for the Solid Rocket Motor Noise Reduction (고체추진기관용 물분사 소음디퓨저의 설계 및 제작)

  • Lee, Jeong-Yeol;Lee, Je-Hyung;Lee, Sung-Woong;Ko, Hyun;Cho, Yong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.299-302
    • /
    • 2011
  • In the supersonic jet of a solid rocket motor, various noise is investigated. The purpose of this study is to attain and evaluating a design and manufacturing technique of the SRM noise reduction. In this study, the water is injected into the supersonic jet of the SRM to reduce the noise. Furthermore, the diffuser and stack are installed to suppress the SRM noise. Through the SRM ground tests, the noise is reduced approximately 20dBA with application of the diffuser/stack with water injection.

  • PDF

Prediction of Non-cavitation Noise from Large Scale Marine Propeller (수치해석을 통한 대형 선박용 프로펠러의 비공동소음 예측)

  • Ryu, Ki-Wahn;Lee, Jong-Yeol;Kim, Bong-Ki;Byun, Jeong-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.2
    • /
    • pp.75-82
    • /
    • 2015
  • Noises from the large scale marine propeller are calculated numerically on non-cavitation condition. The hydrodynamic analysis is carried out by potential based panel method with time marching free wake approach. The distribution of hydrodynamic loads on the propeller surface and noise signals are obtained using the unsteady Bernoulli's equation and the Farasssat's formula respectively. It turns out that the noise signal at the narrow band shows strong peak at the blade passage frequency, and the peak value at the 1/3 octave band also shows the same trend. Noise signals and directivity patterns for both the thickness and the loading noise are compared with each other. The directivity pattern for the loading noise shows minor lobe at the backward side of the rotating disc plane.

Numerical comparative investigation on blade tip vortex cavitation and cavitation noise of underwater propeller with compressible and incompressible flow solvers (압축성과 비압축성 유동해석에 따른 수중 추진기 날개 끝 와류공동과 공동소음에 대한 수치비교 연구)

  • Ha, Junbeom;Ku, Garam;Cho, Junghoon;Cheong, Cheolung;Seol, Hanshin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.261-269
    • /
    • 2021
  • Without any validation of the incompressible assumption, most of previous studies on cavitation flow and its noise have utilized numerical methods based on the incompressible Reynolds Average Navier-Stokes (RANS) equations because of advantage of its efficiency. In this study, to investigate the effects of the flow compressibility on the Tip Vortex Cavitation (TVC) flow and noise, both the incompressible and compressible simulations are performed to simulate the TVC flow, and the Ffowcs Williams and Hawkings (FW-H) integral equation is utilized to predict the TVC noise. The DARPA Suboff submarine body with an underwater propeller of a skew angle of 17 degree is targeted to account for the effects of upstream disturbance. The computation domain is set to be same as the test-section of the large cavitation tunnel in Korea Research Institute of Ships and Ocean Engineering to compare the prediction results with the measured ones. To predict the TVC accurately, the Delayed Detached Eddy Simulation (DDES) technique is used in combination with the adaptive grid techniques. The acoustic spectrum obtained using the compressible flow solver shows closer agreement with the measured one.

Calculation of the Effective Wake in a Radially Sheared Inflow (유효반류 계산에 관한 연구)

  • E.D.,Park;S.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.73-83
    • /
    • 1990
  • A theorectical method is presented for the calculation of the effective wake in an axisymmetric sheared inflow. The effective wake is essential in the design of optimal propulsor and in the reduction of propulsor induced vibration and noise. The nominal wakes are mathematically modelled and the effective wakes are calculated using the computer program developed on the basis of the linear momentum theory. The results show that shear effects arc dominant near the hub and the effective wakes reveal some differences near the hub for the moderately and heavily loaded propulsors but they arc well coincided with the other experimental or theorectical results for the lightly loaded propulsors. To improve the results it may be necessary to consider nonlinear terms neglected in this study and body boundary condition on hub.

  • PDF

A Study on the Model Test for the Twin Propeller Cavitation Noise (쌍축선 추진기 캐비테이션 소음 모형시험 연구)

  • Park, Cheolsoo;Kim, Gun-Do;Yim, Geun-Tae;Park, Young-Ha;Jang, Hyun-Gil;Jang, Young Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.28-36
    • /
    • 2018
  • The experimental results of the model tests for the twin propeller cavitation noise are presented. The model test was carried out by means of procedure of noise measurement followed by the signal processing and full-scale extrapolation. In order to convert the measured sound pressure level into the sound source level, transfer function measurements for three conditions were performed according to the combination of locations and number of virtual sources. White noise and LFM signal were used as a source signals to examine the influence of the input signal. For the twin propellers, 5 transfer functions were defined and the results were discussed. Cavitation noise measurement tests were performed similarly to the transfer function measurement test. Noise source localization analysis was performed to confirm the test effectiveness. It was confirmed that the source level of the twin propeller can be estimated reliably by using transfer function corrections. Finally, the model test results were converted into full-scale by applying the ITTC '87 model-ship scaling raw, and the validity of the model test was confirmed by comparison with the full-scale measurement result.

A Study for Tonal Signal Automatic Recognition of He Ship Radiated Noise by Neural Network (뉴럴 네트워크를 이용할 선박의 Tonal성 신호 자동인식에 관한 연구)

  • Lee Phil-Ho;Lim Ki-Hyun;Park Kyu-Chil;Yoon Jong Rak
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.491-492
    • /
    • 2004
  • 선박의 수중방사소음은 다양한 기계류나 추진기 흑은 선체와 유체간의 상호 작용으로 인하여 여러 형태의 특성신호로 나타나며, 속력 종속적인 추진계통 신호 성분과 비종속적인 보기류 신호 성분이 혼재되어 다수의 신호성분으로 나타난다. 또한 토널 신호의 세기와 바다의 음향 전달 특성 등으로 인하여 신호가 미약하게 되거나 끊어져서 불연속하게 나타나기도 한다. 본 연구에서는 이러한 점을 해결하기 위해 선박의 Tonal성 신호를 자동으로 탐지하고 분류하기 위해 스펙트로그램 상에서 연속되는 신호에 가중치를 주어 지속성 신호여부를 판별한 후에 정해진 임계치를 초과하는 성분을 Tonal로 선정하였으며, 선정된 Tonal 신호의 발생 기원이 속력 종속/비종속적인지를 자동으로 판별하는 알고리즘을 실제 선박 방사소음에 대해 적용한 결과에 대해 보고한다.

  • PDF

A Tonal signal automatic recognition for noise sources classification of the ship radiated noise (선박의 방사소음원 분류를 위한 Tonal 신호 자동인식 기법 연구)

  • Lee Phil-Ho;Yoon Jong-Rak;Park Kyu-Chil;Lim Ki-Hyun
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.175-178
    • /
    • 2004
  • 선박의 수중방사소음은 다양한 기계류나 추진기 혹은 선체와 유체간의 상호 작용으로 인하여 여러 형태의 특성신호로 나타나게 된다. 이는 선박의 운용조건, 장비 회전특성 및 내부구조에 따라 스펙트럼상에 상이한 주파수로 확인됨은 물론, 신호의 출현 형태에도 다양성을 보이고 있다. 일반적으로 선박소음은 속력 종속적인 추진 계통 성분과 비종속적인 보기류 신호로 구분되나 다수의 신호성분이 혼재되어 발생기원을 분류하는 것은 복잡한 과정을 거쳐야 한다. 본 연구에서는 이러한 점을 해결하기 위해 선박의 Tonal성 신호를 자동으로 탐지하고 분류하기 위해 규준화된 스펙트로그램 상에서 연속되는 신호에 가중치를 주어 지속성 신호여부를 판별한 후에 정해진 임계치를 초과하는 성분을 Tonal로 선정하였다. 선정된 Tonal에 대해 주파수선의 대역특성 및 시간 변동성에 대한 패턴인식 방법을 적용하여 Tonal의 발생기원이 속력 종속/비종속적인지를 자동으로 판별하는 알고리즘의 유용성에 대한 결과를 기술하였다.

  • PDF

Numerical investigation of blade tip vortex cavitation noise using Reynolds-averaged Navier-Stokes simulation and bubble dynamics model (Reynolds-averaged Navier-Stokes 해석과 기포동역학 모델을 이용한 날개 끝 와류 공동 소음의 수치적 고찰)

  • Ku, Garam;Cheong, Cheolung;Seol, Hanshin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.77-86
    • /
    • 2020
  • In this study, the Eulerian/Lagrangian one-way coupling method is proposed to predict flow noise due to Blade-Tip Vortex Cavitation (BTVC). The proposed method consists of four sequential steps: flow field simulation using Computational Fluid Dynamics (CFD) techniques, reconstruction of wing-tip vortex using vortex model, generation of BTVC using bubble dynamics model and acoustic wave prediction using the acoustic analogy. Because the CFD prediction of tip vortex structure generally suffers from severe under-prediction of its strength along the steamwise direction due to the intrinsic numerical damping of CFD schemes and excessive turbulence intensity, the wing-tip vortex along the freestream direction is regenerated by using the vortex modeling. Then, the bubble dynamics model based on the Rayleigh-Plesset equation was employed to simulate the generation and variation of BTVC. Finally, the flow noise due to BTVC is predicted by modeling each of spherical bubbles as a monople source whose strength is proportional to the rate of time-variation of bubble volume. The validity of the proposed numerical methods is confirmed by comparing the predicted results with the measured data.

An experimental study on the effect of mass injection location and flow rate for tip vortex cavitation of 3D hydrofoil (수중익 날개 끝 보텍스 캐비테이션 제어를 위한 질량분사 위치 및 분사량 영향에 대한 실험적 연구)

  • Eunsue Hwang;So-Won Jeong;Hongseok Jeong;Hanshin Seol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.233-242
    • /
    • 2023
  • In this paper, the effect of mass injection on the control of tip vortex cavitation was studied experimentally. A mass injection system for a 3D hydrofoil was designed to control the location of injection as well as the injection rate. A series of cavitation tests were carried out in a cavitation tunnel for different injection locations and rates. The cavitation behaviour was observed using a high-speed camera and the corresponding noise was measured using a hydrophone installed in the observation window. The results showed that the tip vortex cavitation was suppressed under certain conditions and the noise was reduced in some frequency bands. It was also found that there is a location where the effect of mass injection could be maximized and hence the noise reduction.

Flow Noise Analysis of Hull Appendages Using Lattice Boltzmann Method (격자 볼츠만 기법을 이용한 선체 부가물 유동소음해석)

  • Yeo, Sang-Jae;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.742-750
    • /
    • 2020
  • The flow noise generated by hull appendages is directly related to the performance of the sonar in terms of self-noise and induces a secondary noise source through interaction with the propeller and rudder. Thus, the noise in the near field should be analyzed accurately. However, the acoustic analogy method is an indirect method that is not used to simulate the propagation of an acoustic signal directly; therefore, diffraction, reflection, and scattering characteristics cannot be considered, and near-field analysis is limited. In this study, the propagation process of flow noise in water was directly simulated by using the lattice Boltzmann method. The lattice Boltzmann method could be used to analyze flow noise by simulating the collision and streaming processes of molecules, and it is suitable for noise analysis because of its compressibility, low dissipation rate, and low dispersion rate characteristics. The flow noise source was derived using Reynolds-averaged Navier-Stokes equations for the hull appendages, and the propagation process of the flow noise was directly simulated using the lattice Boltzmann method by applying the developed flow-acoustic boundary conditions. The derived results were compared with Ffowcs Williams-Hawkings results and hydrodynamic pressure results based on the receiver location to verify the usefulness of the lattice Boltzmann method within the near-field range in comparison with other techniques.