• Title/Summary/Keyword: 추력기

Search Result 680, Processing Time 0.023 seconds

탑재소프트웨어 프로그래밍 언어 비교 - C vs. ADA

  • Park, Su-Hyeon;Gu, Cheol-Hoe;Gang, Su-Yeon;Lee, Sang-Gon
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.46.2-46.2
    • /
    • 2009
  • 탑재소프트웨어는 위성의 자세, 전력, 열 제어를 담당하는 소프트웨어로서 위성의 탑재컴퓨터 상에서 실행된다. 탑재소프트웨어는 추력기, 배터리, 온도조절장치와 같은 위성의 하드웨어 장치를 자치적으로 관리한다. 지상에서 위성을 운영할 수 있도록 탑재소프트웨어는 지상으로부터 명령을 받아서 처리하고, 위성의 텔레메트리 데이터를 지상으로 전송한다. 위성의 탑재소프트웨어를 프로그래밍하기 위하여 C 언어와 ADA 언어가 주로 사용된다. 이 논문에서는 소프트웨어 디자인과 하위레벨 프로그래밍 관점에서 C 언어와 ADA 언어를 비교 분석한다. 프로그래밍언어는 소프트웨어 디자인과 불가분의 관계에 있다. 이 논문은 프로그래밍언어와 함께 다목적실용위성과 통신해양기상위성의 소프트웨어 디자인을 소개한다. 다목적실용위성의 탑재소프트웨어는 절차 지향언어인 C로 작성되었으며, 함수 호출을 기반으로 설계되었다. 통신해양기상위성의 경우, 객체지향언어인 ADA로 작성되었으며, HOOD(Hierarchical Object-Oriented Design) 기법에 따라 모델링되었다. 탑재소프트웨어 프로그래밍언어는 위성의 탑재 하드웨어와 직접적으로 상호작용하도록 요구된다. 이 논문은 C와 ADA 언어가 메모리주소 및 로우 스토리지를 다루는 방법을 보여준다.

  • PDF

다목적실용위성 1호 Maneuver Mode에서의 지상관제 DATA 분석

  • Suk, Byong-Suk
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.65-71
    • /
    • 2002
  • KOMPSAT-1 AOCS mode divided into three major mode like Sun, Maneuver, Science Mode. The Maneuver mode consist of attitude hold and Δ-V Burn submode. This paper focus on the analysis of AOCS Maneuver Mode characteristics based on on-orbit playback data. The nadir pointing performance of attitude hold submode and the process for Δ-V Burn firing with plus/ minus 90 degree pitch/ roll maneuvering was verified. And also verified that the on-orbit performance meets the AOCS subsystem specification as designed.

  • PDF

정지궤도 통신위성의 추진시스템 개념설계 연구

  • Park, Eung-Sik;Park, Bong-Kyu;Kim, Jeong-Soo
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.55-64
    • /
    • 2002
  • A conceptual design of propulsion system for a geosynchronous communication satellite with 12 years design life is presented in this paper. Propellant mass budget for the design life is calculated using total velocity increment (ΔV) flowed-down from mission requirement analysis. Sizes of the fuel and oxidizer tank are derived based on the calculated propellant mass budget, and mass of the pressurant as well as the size and pressure of pressurant tank are calculated too. Thruster positioning, number of rocket engines, and position of tank are determined through Trade-Off Study with Structure & Mechanical Subsystem. Propulsion system configuration and its schematics are presented finally.

  • PDF

Current technology status for the Reaction Control System of Launch Vehicle (해외 상용발사체의 RCS 개발 동향)

  • Kim, In-Tae;Lee, Jae-Won;Seo, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.72-77
    • /
    • 2008
  • The function of the Reaction Control System include roll, pitch and yaw control of the launch vehicles and fine control maneuvers and precision upper stage orientation before separation of one or more payload. This paper describes the overview of commercial launchers, current technology trend for RCS of launch vehicles, and development status of medium class thruster for RCS.

  • PDF

Mixture Ratio Stabilizer for Liquid Propellant Rocket Engine (액체 추진제 로켓엔지의 혼합비 안정기)

  • Jung, Tae-Kyu;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.703-711
    • /
    • 2008
  • In this paper, stabilizer which maintains the mixture ratio of gas generator of LRE has been introduced. Design criterion for the ideal performance of stabilizer was derived. Significant parameters on the performance of stabilizer were identified through mathematical model and gas generator system analysis. Also, simulation and test results of the gas generator system showed fair agreement, thus proving the validity of the mathematical model of the stabilizer.

Operation and Result Analysis of Hydraulic Vehicle Holding Device (발사체 지상고정장치 유압시스템 작동 시험 및 결과 분석)

  • Kim, Dae Rae;Yang, Seong Pil;Lee, Jae Jun;Song, Oh-Seob;Lee, Young-Shin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.80-88
    • /
    • 2018
  • The function of a vehicle holding device (VHD) is to securely hold a launch vehicle on the launch pad and release the launch vehicle at maximum thrust after engine ignition to allow lift-off of the launch vehicle. During the release of the launch vehicle, to prevent the Ka doing a doing a doing mode, which is the vertical oscillation of the entire liquid propellant, the release of the launch vehicle should be gradual. In this study, for the gradual release of a launch vehicle, a hydraulic system comprising an accumulator and pyro valve to operate a hydraulic cylinder and control the speed of the cylinder with an orifice is introduced. Through a test, the influence of design variables on the cylinder speed is analyzed. Based on this, the design values of the hydraulic cylinder are determined. Through this study, the engineering basis for developing a VHD releasing a launch vehicle at maximum thrust is provided.

Conceptual Study of an Exhaust Nozzle of an Afterburning Turbofan Engine (후기연소기 장착 터보팬엔진의 배기노즐 개념연구)

  • Choi, Seongman;Myong, Rhoshin;Kim, Woncheol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.62-69
    • /
    • 2014
  • This paper presents a preliminary study of a convergent divergent nozzle in an afterburning turbofan engine of a supersonic aircraft engine. In order to design a convergent divergent nozzle, cycle model of a low bypass afterburning turbofan engine of which thrust class is 29,000 lbf at a sea level static condition is established. The cycle analysis at the design point is conducted by Gasturb 12 software and one dimensional gas properties at a downstream direction of the turbine are obtained. The dimension and configuration of an model turbofan engine are derived from take-off operation with wet reheat condition. The off-design cycle calculation is conducted at the all flight envelope on the maximum flight Mach number of 2.0 and maximum flight altitude of 15,000 m.

Analysis of Dual Combustion Ramjet Using Quasi 1D Model (준 1차원 모델을 적용한 이중연소 램제트 해석)

  • Choi, Jong Ho;Park, Ik Soo;Gil, Hyun Young;Hwang, Ki Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.81-88
    • /
    • 2013
  • The component based propulsion modeling and simulation of an dual ramjet engine using Taylor-Maccoll flow equation and quasi 1-D combustor model. The subsonic and supersonic intake were modeled with Taylor-Maccoll flow having $25^{\circ}$ cone angle, the gas generator which transfers a pre-combustion gas into supersonic combustor was developed using Lumped model, and the determination of the size of nozzle throat of a gas generator was described. A quasi 1-D model was applied to model a supersonic combustor and the variation of temperature and pressure inside combustor were presented. Furthermore, the thrust and specific impulse applying fuel regulation by pressure recovery ratio and equivalence ratio were derived.

Effect of Spiral Turbulent Ring on Detonation Performances of Acetylene-Oxygen Mixture (나선형 난류고리가 아세틸렌-산소 혼합기의 데토네이션파 성능에 미치는 영향)

  • Son, Min;Seo, Chanwoo;Lee, Keon Woong;Koo, Jaye;Smirnov, N.N.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.9-15
    • /
    • 2013
  • An effect of a spiral turbulent ring, so-called Shchelkin spiral, on a detonation performance was studied experimentally for acetylene and oxygen mixture. A couple of dynamic pressure transducers were used to calculate a detonation wave velocity by a time difference between two pressure peaks. In addition, impulse was measured by a load cell and the impulse was used to analyze the spiral effect on the detonation performance. A CFD analysis was adopted to calculate mass flow rates of the propellants and the minimum filling time. The maximum velocity and pressure were measured at the equivalence ratio of 2.4, and the measured values showed similar trend to C-J conditions calculated from CEA. For the shorter chamber with the short spiral, the maximum detonation velocity was appeared. In contrast, the longer chamber without the spiral showed the maximum thrust performance.

On-orbit Thermal Analysis for Verification of Thermal Design of 6 U Nano-Satellite with Multiple Payloads (멀티 탑재체를 가진 6 U 초소형위성의 열설계 검증을 위한 궤도 열해석)

  • Kim, Ji-Seok;Kim, Hui-Kyung;Kim, Min-Ki;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.455-466
    • /
    • 2020
  • In this study, we built a thermal model for SNIPE 6U nano-satellite which has scientific mission for measuring science data in near Earth space environment and described thermal design based on the thermal model. And the validity of the thermal design was verified through the on-orbit thermal analysis. The thermal design was carried out mainly on the passive thermal control techniques such as surface finishes, insulators, and thermal conductors in consideration of the characteristics of the nano-satellite. However, the components with narrow operating temperature range and directly exposed to the orbital thermal environments, such as a battery and thrusters, are accomodated with heaters to satisfy the temperature requirements. On-orbit thermal analysis conditions are based on the basic orbital conditions of the satellite, and thermal analysis was performed for Normal mode, Launch & Early Orbit Phase (LEOP), Safehold mode, and Maneuver mode which are classified by the power consumption and the attitude of the satellite according to the mission scenario. The analysis results for each mode confirmed that every component satisfies the temperature requirement. In addition, the heater capacity and duty cycle of the battery and thruster were calculated through the analysis results of the Safehold mode.