DOI QR코드

DOI QR Code

Effect of Spiral Turbulent Ring on Detonation Performances of Acetylene-Oxygen Mixture

나선형 난류고리가 아세틸렌-산소 혼합기의 데토네이션파 성능에 미치는 영향

  • 손민 (한국항공대학교 대학원 항공우주 및 기계공학과) ;
  • 서찬우 (한국항공대학교 대학원 항공우주 및 기계공학과) ;
  • 이건웅 (한국항공대학교 대학원 항공우주 및 기계공학과) ;
  • 구자예 (한국항공대학교 항공우주 및 기계공학부) ;
  • Received : 2013.02.04
  • Accepted : 2013.03.15
  • Published : 2013.04.01

Abstract

An effect of a spiral turbulent ring, so-called Shchelkin spiral, on a detonation performance was studied experimentally for acetylene and oxygen mixture. A couple of dynamic pressure transducers were used to calculate a detonation wave velocity by a time difference between two pressure peaks. In addition, impulse was measured by a load cell and the impulse was used to analyze the spiral effect on the detonation performance. A CFD analysis was adopted to calculate mass flow rates of the propellants and the minimum filling time. The maximum velocity and pressure were measured at the equivalence ratio of 2.4, and the measured values showed similar trend to C-J conditions calculated from CEA. For the shorter chamber with the short spiral, the maximum detonation velocity was appeared. In contrast, the longer chamber without the spiral showed the maximum thrust performance.

Shchelkin 나선으로 알려진 나선형 난류고리가 아세틸렌-산소 혼합기의 데토네이션파의 성능에 미치는 영향을 실험적으로 연구하였다. 고속응답 압력 트랜스듀서로 측정된 압력 피크의 시간차를 이용하여 데토네이션파 속도를 산출하였다. 또한 추력대를 이용해 데토네이션파의 강도를 측정하여 나선형 난류고리가 연소성능에 미치는 영향을 분석하였다. CFD를 이용하여 간접적으로 유량을 산출하고, 최대 충진률을 위한 최소 충진시간을 도출하였다. 아세틸렌-산소 추진제의 당량비 2.4에서 최대속도 및 압력을 나타냈으며, CEA로 계산된 C-J 속도와 유사한 값을 보였다. 짧은 연소기와 짧은 나선형 난류고리를 사용하는 경우에 최대의 데토네이션파 속도를 나타냈지만, 반대로 난류고리를 사용하지 않은 긴 연소기에서 최대 추력성능을 보였다.

Keywords

References

  1. Kailasanath, K., "Multiphase Detonations in Pulse Detonation Engines-A Status Report," AIAA-2003-4683, 2003
  2. Schauer, F. R., Miser, C. L., and Tucker, K. C., "Detonation Initiation of Hydrocarbon -Air Mixtures in a Pulsed Detonation Engine," Air Force Research Laboratory, 2005
  3. Camardo II, L. A., King, P. I., Stevens, C., Schauer, F. R., and Hoke, J. L., "Determination of Effective Crossover Location and Dimensions for Branched Detonation in a Pulsed Detonation Engine," 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2012-0122, 2012
  4. New, T. H., Panicker, P. K., Chui, K. F., Tsai, H. M., and Lu, F. K., "Experimental Study on Deflagration-to-Detonation Transition Enhancement Methods in a PDE," AIAA 2006-7958, 2006
  5. Braun, E. M., Balcazar, T. S., Wilson, D. R., and Lu, F. K., "Experimental Study of a High-Frequency Fluidic Valve Fuel Injector," 47th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, AIAA 2011-5545, 2011
  6. Lavertu, T. M., Ma, F., and Tangirala, V. E., "Estimation of PDE Performance Using a Pulsed Limit Cycle Unsteady Combustion Calculation," 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2010-6715, 2010
  7. Glaser, A., Brumberg, J., Rasheed, A., Dunton, R. A., and Tangirala, V. E., "Investigations of Thrust Generated by a Valved, Multitube PDE with Exit Nozzles," 44th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2008-4692, 2008
  8. Knox, B. W., Forliti, D. J., Stevens, C. A., Hoke, J. L., and Schauer, F. R., "A Comparison of Fluidic and Physical Obstacles for Deflagration-to-Detonation Transition," 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2011-587, 2011
  9. New, T. H., Panicker, P. K., Chui, K. F., Tsai, H. M., and Lu, F. K., "Experimental Study on Deflagration-to-Detonation Transition Enhancement Methods in a PDE," 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2006-7958, 2006
  10. Dvorak, W. T., "Performance Characterization of Swept Ramp Obstacle Fields in Pulse Detonation Applications," Master's Thesis, Naval Postgraduate School, 2010
  11. Meyer, T. R., Hoke, J. L., Brown, M. S., Gord, J. R., and Schauer, F. R., "Experimental Study of Deflagration-to-Detonation Enhancement Techniques in A H2/Air Pulsed-Detonation Engine," 38th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2002-3720, 2002
  12. Lee, J. H. S., The Detonation Phenomenon, Cambridge University Press, 2008
  13. Kailasanath, K., "Recent Developments in the Research on Pulse Detonation Engines," 40th AIAA Aerospace Sciences Meeting & Exhibit, AIAA 2002-0470, 2002
  14. Kaneshige, M. and Shepherd, J. E., "Detonation Database," GALCIT Technical Report FM97-8, 1997
  15. Reddy, N. K. N., "Development and Testing of a Miniature Pulse Detonation Engine," Master's Thesis, Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, 2004
  16. New, T. H., Panicker, P. K., Lu, F. K., and Tsai, H., "Experimental Investigations on DDT Enhancements by Shchelkin Spirals in a PDE," 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-552, 2006
  17. Panicker, P.K., Li, J., Lu, F.K., and Wilson, D. R., "Application of a Pulsed Detonation Engine for Electric Power Generation," 45th AIAA Aerospace Sciences, AIAA-2007-1246, 2007
  18. 김도헌, 이인철, 최용준, 공주열, 구자예, "펄스데토네이션엔진(PDE)용 DDT 튜브의 제작 및 시험," 한국추진공학회 2011년도 추계학술대회, 2011, pp.624-628
  19. ANSYS Inc., FLUENT 6.3 User's Guide, 2006
  20. Gordon, S. and McBride, B. J., "Computer Program for Calculation Complex Chemical Equilibrium Compositions and Applications," NASA RP-1311, 1994

Cited by

  1. Detonation engine fed by acetylene–oxygen mixture vol.104, pp.1, 2014, https://doi.org/10.1016/j.actaastro.2014.07.019