• Title/Summary/Keyword: 최적pH

Search Result 3,340, Processing Time 0.034 seconds

Screening of Fibrinolytic Enzyme Producing from Microorganisms and Optimum Conditions of Enzyme Production (혈전 분해효소 생산균의 탐색 및 효소생산 최적조건의 조사)

  • 최무영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.976-980
    • /
    • 2003
  • A strain of potential producer of fibrinolytic enzyme was isolated from Korean fermented food. The isolated bacterium was identified and named as Bacillus brevis KJ-23. The optimal condition of the medium for the production of fibrinolytic enzyme from Bacillus brevis KJ-23 was nutrient broth with 0.5% D-ribose, 0.5% malt extract and 0.3% $K_2$HPO$_4$. The optimum pH, temperature and fermentation time for the enzyme production were pH 7.0, 3$0^{\circ}C$ and 24 hr, respectively.

Optimization of TiCl4 Concentration and Initial pH for Phosphorus Removal in Synthetic Wastewater (합성폐수 내 인을 제거하기 위한 TiCl4 농도 및 초기 pH 최적조건 도출)

  • Shin, So-Yeun;Kim, Jong-Ho;Ahn, Johng-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.619-624
    • /
    • 2015
  • This study experimentally determined the effect of titanium tetrachloride (TiCl4) concentration ([TiCl4]) (0.25-0.55 mM) and initial pH (3-11) on phosphorus (P) removal in synthetic wastewater (2 mg P/L). The P removal efficiency increased when [TiCl4] increased. The P removal efficiency showed a parabolic trend with an inflection point at pH 7. At the molar ratio of TiCl4 and P>6.2, the P removal efficiency was over 90% and the residual P concentration was less than 0.2 mg/L. Within the design boundaries, the complete P removal could be achieved at 7.0≤initial pH≤8.5 and 0.43≤[TiCl4]≤0.55 mM. The final pH was over 5.8 at initial pH≥7.7 and [TiCl4]≥0.35 mM. The results showed that TiCl4 was effective in P removal in water so that it could be an alternative chemical for P removal.

Optimization of Soymilk Fermentation by the Protease-producing Lactobacillus paracasei (Protease를 생산하는 Lactobacillus paracasei의 분리와 이를 이용한 두유 발효 최적화)

  • Lee, Sulhee;Jang, Dong-Hun;Choi, Hyuk Jun;Park, Young-Seo
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.571-577
    • /
    • 2013
  • Our aim was to ferment soymilk using lactic acid bacteria that showed protease activity and to optimize the condition for fermentation. In total, 108 strains of protease-producing lactic acid bacteria were isolated from various fermented foods such as kimchi and jeotgal, and among them, 29 strains displaying the highest protease activity were selected for further study. From these 29 strains, strain MK1, whose protease activity was 126 $mU/mL{\cdot}min$, was selected as the optimal fermentation strain owing to its high ability to digest soymilk protein. It was henceforth labeled as Lactobacillus paracasei MK1. The optimum conditions for the fermentation of soymilk by using L. paracasei MK1 were determined to be as follows: 30 h of fermentation time at a temperature of $30^{\circ}C$, and at a pH of 6.0 in the initial growth medium.

The cultivate characteristics and the wood rotting ability and type of the Kuehneromyces mutabilis Sing. et A. H. Smith (무리우산버섯균의 배양적 특징과 목재부후 특성 파악)

  • Yun, Dae-Ryoung;Chai, Jyung-Ki
    • Journal of Mushroom
    • /
    • v.2 no.4
    • /
    • pp.192-199
    • /
    • 2004
  • The mycelial mass of K. mutabilis greatly increased at pH 5.5~6.0 but decreased pH 6.0. The linear mycelial growth wsa mostly supported on sawdust of Quercus accutisima and the mycelial density wsa high on sawdust of Q. accutisima and corn cob. Much mycelial distribution could be showen in ray parenchyma cell and ray tracheid. Severe degradation of ray parenchyma cell was found but little degradation of ray tracheid cell was found. The dry weight loss wsa 5.9% after agar-block test. And the pH wsa acidified from 6.07 to 4.31 and hot water extractives was decreased after degradation of Q. serrata sawdust by K. mutabilis.

  • PDF

Optimal Conditions for the Production of Immunostimulating Polysaccharides from the Suspension Culture of Angelica gigas Cells. (면역증강성 다당 생산을 위한 참당귀 세포배양의 최적조건)

  • 안경섭;서원택;심웅섭;김익환
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.130-136
    • /
    • 1998
  • An Immunostimulating polysaccharide was produced from the suspension culture of Angelica gigas H4, plant cells. In order to enhance the polysaccharide production by the A. gigas cell culture, medium composition and physical conditions were optimized. Schenk and Hildebrandt (SH) medium was selected as an optimal basal medium for the growth of A. gigas. The maximum cell and polysaccharide concentration obtained in SH medium were 15.8 g DCW/l and 0.85 g polysaccharide/l, respectively, at $25^{\circ}C$ under dark condition. For the enhanced polysaccharide production, a polysaccharide production medium (PPM) was established by modifying Gamborg B5 medium with optimized carbon sources, growth regulators, organic and inorganic elements. Optimal initial pH and temperature were 6.0-6.6 and $20^{\circ}C$, respectively, and the dark condition was better than the light condition. The maximum polysaccharide concentration of 1.5 g/l could be obtained through the optimization of the medium composition and physical conditions.

  • PDF

Influences of pH Conditions on Syngas Fermentation using Clostridium ljungdahlii (pH 조건이 Clostridium ljungdahlii를 이용한 합성가스 발효공정에 미치는 영향)

  • Wang, Long;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.143-150
    • /
    • 2012
  • 바이오에탄올 생산공정은 당 (Sugar)을 기반으로 하는 공정과 합성가스를 이용하는 공정으로 분류할 수 있다. 이 가운데 합성가스를 이용하는 공정은 촉매를 이용한 화학적 공정과 혐기성 발효에 의한 생물학적 공정의 두 가지로 나뉜다. Clostridium ljungdahlii는 일산화탄소와 수소가 주요 성분으로 구성되는 합성가스를 이용하여 에탄올과 아세트산을 생산할 수 있는 균주 중의 하나로 알려져 있다. 합성가스 발효공정에서 pH는 미생물의 증식과 에탄올 등의 생산에 아주 중요한 요인 중의 하나이다. 본 연구에서는 pH 조건이 미생물의 생장과 에탄올 생산성에 미치는 영향을 조사하였다. C. ljungdahlii 배양은 엄격한 혐기성 조건에서 100 ml의 serum bottle과 pH 제어가 가능한 반응기를 이용한 실험결과, 회분식 배양 조건에서는 미생물의 생장과 에탄올 생산을 위한 최적 초기 pH는 7.0로 나타났다. 미생물 농도는 0.57 g/L, 에탄올 농도 0.91 g/L로 나타났다. pH 4.5 이하에서는 미생물의 생장이 멈추는 것으로 나타났다. pH 제어가 가능한 생물반응기에서는 pH 6.0 일때 에탄올 생산량이 pH 7.0 일때 보다 높게 나타났다. 일정 수준의 미생물 농도를 유지한 조건에서 합성가스를 기포식으로 주입하고 pH 5.9에서 5.4까지 제어하였을 때 미생물량과 에탄올 농도가 증가하였다. 60 시간이 지난 후에 미생물의 농도는 0.498 g/L, 에탄올은 1.056 g/L까지 이르렀다.

Effect of pH on production of gellan by Pseudomnas eldoea ATCC 31461

  • Im, Seong-Mi;Lee, Ji-Hyeon;Kim, Seong-Gu
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.201-204
    • /
    • 2002
  • The gellan was extracellular polysaccharide produced by Pseudomonas elodea A TCC 31461 at aerobic condition. Gellan provides various functionalities such as gelling, suspending, stabilizing, emulsifying and binding properties in aqueous systems. In this study, the effect of pH on the cell growth and the gellan production were evaluated in shake- flasks and in 5 ${\ell}$ batch fermentor. In the shake-flasks culture, maximum gellan production was obtained with 1.66g/ ${\ell}$ when initial pH was 7.0. The batch fermentation was performed in the medium pH control ranged pH 5.5-8.5. The maximum gellan production of 1.97g/l was obtained with constant pH 6.0.

  • PDF

Optimization and Development of Prediction Model on the Removal Condition of Livestock Wastewater using a Response Surface Method in the Photo-Fenton Oxidation Process (Photo-Fenton 산화공정에서 반응표면분석법을 이용한 축산폐수의 COD 처리조건 최적화 및 예측식 수립)

  • Cho, Il-Hyoung;Chang, Soon-Woong;Lee, Si-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.642-652
    • /
    • 2008
  • The aim of our research was to apply experimental design methodology in the optimization condition of Photo-Fenton oxidation of the residual livestock wastewater after the coagulation process. The reactions of Photo-Fenton oxidation were mathematically described as a function of parameters amount of Fe(II)($x_1$), $H_2O_2(x_2)$ and pH($x_3$) being modeled by the use of the Box-Behnken method, which was used for fitting 2nd order response surface models and was alternative to central composite designs. The application of RSM using the Box-Behnken method yielded the following regression equation, which is an empirical relationship between the removal(%) of livestock wastewater and test variables in coded unit: Y = 79.3 + 15.61x$_1$ - 7.31x$_2$ - 4.26x$_3$ - 18x$_1{^2}$ - 10x$_2{^2}$ - 11.9x$_3{^2}$ + 2.49x$_1$x$_2$ - 4.4x$_2$x$_3$ - 1.65x$_1$x$_3$. The model predicted also agreed with the experimentally observed result(R$^2$ = 0.96) The results show that the response of treatment removal(%) in Photo-Fenton oxidation of livestock wastewater were significantly affected by the synergistic effect of linear terms(Fe(II)($x_1$), $H_2O_2(x_2)$, pH(x$_3$)), whereas Fe(II) $\times$ Fe(II)(x$_1{^2}$), $H_2O_2$ $\times$ $H_2O_2$(x$_2{^2}$) and pH $\times$ pH(x$_3{^2}$) on the quadratic terms were significantly affected by the antagonistic effect. $H_2O_2$ $\times$ pH(x$_2$x$_3$) had also a antagonistic effect in the cross-product term. The estimated ridge of the expected maximum response and optimal conditions for Y using canonical analysis were 84 $\pm$ 0.95% and (Fe(II)(X$_1$) = 0.0146 mM, $H_2O_2$(X$_2$) = 0.0867 mM and pH(X$_3$) = 4.704, respectively. The optimal ratio of Fe/H$_2O_2$ was also 0.17 at the pH 4.7.

Optimum cultivation conditions for mass production of antagonistic bacterium Pseudomonas azotoformans HC5 effective in antagonistic of brown blotch disease caused by Pseudomonas tolaasii (버섯 세균갈색무늬병균(Pseudomonas tolaasii)에 대한 길항세균 Pseudomonas azotoformans HC5의 대량배양을 위한 최적 배양조건)

  • Lee, Chan-Jung;Moon, Ji-Won;Yoo, Young-Mi;Han, Ju-Yeon;Cheong, Jong-Chun;Kong, Won-Sik
    • Journal of Mushroom
    • /
    • v.13 no.2
    • /
    • pp.97-102
    • /
    • 2015
  • This study was conducted to investigate optimum conditions for mass production of antagonistic microbes Pseudomonas azotoformans HC5. P. azotoformans HC5 is a potent biological control agent to control brown blotch disease caused by Pseudomonas tolaasii. This markedly showed the antagonistic activity against P. tolaasii, the most destructive pathogen of cultivated mushrooms. To define the optimum conditions for the mass production of the P. azotoformans HC5, we have investigated optimum culture conditions and effects of various nutrient source on the bacterial growth. The optimum initial pH and temperature were determined as pH 6.0 and $15^{\circ}C$, respectively. The optimal concentration of medium elements for the growth of pathogen inhibitor bacterium was determined as follows: 0.6% adonitol, 1.5% yeast extract, 0.8% $NH_4H_2PO_4$, 5mM $MgSO_4$, and 0.2% asparagine.

Purification and Characterization of Invertase in Astringent Persimmon during Sun Drying (건시제조 중 Invertase의 정제 및 그 특성)

  • Lee, Byung-Ou;Moon, Kwang-Deog;Shon, Tae-Hwa
    • Journal of the Korean Society of Food Culture
    • /
    • v.5 no.2
    • /
    • pp.269-274
    • /
    • 1990
  • This study was conducted to determine invertase activity in persimmon during the drying process and characterize the purified enzyme. As drying proceeded, invertase activity increased until 10 days and decreased gradually afterwards. Invertase in persimmon fruit was extracted with 250 mM potassium phosphate sulfate buffer at pH 7.4. The enzyme was purified by means of ammonium sulfate fractionation, column chromatography on DEAE-cellulose and gel filtration on Sephadex G-200 column. The optimal temperature of enzyme was $40^{\circ}C$ and optimal pH was 5.0 and 6.0 for sucrose and raffinose, respectively. The enzyme was stable up to $50^{\circ}C$ and pH 3-6. The Km value of the enzyme, with sucrose as a substrate, was 2.5mM. Electrophoretic pattern of purified enzyme solution showed a single band.

  • PDF