• Title/Summary/Keyword: 최적 형상 설계

Search Result 1,096, Processing Time 0.032 seconds

Isogeometric Shape Design Optimization of Power Flow Problems at High Frequencies (고주파수 파워흐름 문제의 아이소-지오메트릭 형상 최적설계)

  • Yoon, Minho;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.155-162
    • /
    • 2014
  • Using an isogeometric approach, a continuum-based shape design optimization method is developed for steady state power flow problems at high frequencies. In case the isogeometric method is employed to the shape design optimization, the NURBS basis functions used in CAD geometric modeling are directly utilized to embed the exact geometry into the computational framework so that the design parameterization for shape optimization is much easier than that in the finite element method and consequently provides the enhanced smoothness of design perturbations. Thus, exact geometric models can be used in both the response and the shape sensitivity analyses, where normal vector and curvature are continuous over the whole design space so that enhanced shape sensitivity can be expected. Through numerical examples, the developed isogeometric sensitivity is compared with finite difference one to provide excellent agreement. Also, it turns out that the proposed method works very well in the shape optimization problems.

Topology Optimization in the Process of Conceptual Design (개념설계를 위한 토폴로지 최적화 기법)

  • 고병천
    • Journal of the KSME
    • /
    • v.35 no.8
    • /
    • pp.716-724
    • /
    • 1995
  • 토폴로지 설계는 미리 형상이 결정되지 않은 새로운 개념의 제품을 설계하고자 할 때나 설계 경험이 풍부하지 못한 경우, 그 개념적 형상을 결정하는 데 매우 유용하다. 실제로 이러한 토폴 로지 설계의 결과를 최근 급속 시제품 제작기(rapid prototyping machine)와 함께 사용하게 되면 처음 개념설계에서 최초시제품의 형상을 예측하고 제작하는 데 많은 시간을 절약할 것으로 판 단된다. 그러나 토폴로지 최적화에 따른 구조물은 구조물의 한계 질량내에서 평균 강성이 가장 큰 구조물일 뿐, 국부적인 응력한계에 대한 최적화는 아니다. 따라서 최종적인 최적화 형상을 얻기 위해서는, 먼저 한계질량을 갖는 최적 토폴로지 구조물의 모델을 구하고, 이 모델에 대하여 설계변수에 따른 민감도 해석을 수행하여 최대응력의 한계값을 갖는 구조를 구하면 된다. 그림 10은 이러한 토폴로지 최적화와 민감도 해석을 통한 최적화를 수행하는 복합 최적설계 과정에 흐름도이다. 설계민감도 해석은 본 연구의 범위에 포함되지 않아서 여기서는 제외하였지만, 이에 관한 일반 상업화된 소프트웨어들이 많이 나와 있으므로 이를 참조하면 된다.

  • PDF

Shape Optimization of Cavitator for a Supercavitating Projectile Underwater (초공동(超空洞) 하의 수중 주행체 캐비테이터 형상최적설계)

  • Choi, Joo-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.82-85
    • /
    • 2008
  • When a projectile travels at high speed underwater, supercavitating flowarises, in which a huge cavity is generated behind the projectile so that only the nose, i.e., the cavitator, of the projectile is wetted, while the rest of it should be surrounded by the cavity. In that case, the projectile can achieve very high speed due to the reduced drag. Furthermore if the nose of the body is shaped properly, the attendant pressure drag can be maintained at a very low value, so that the overall drag is also reduced dramatically. In this study, shape optimization technique is employed to determine the optimum cavitator shape for minimum drag, given certain operating conditions. Simultaneous optimization technique is proposed for efficient cavitator shape optimization, in which the cavity and cavitator shape are determined in a single optimization routine.

  • PDF

Optimal Shape of LCVA considering Constraints on Liquid Level (수위의 구속조건을 고려한 LCVA의 최적형상)

  • Park, Ji-Hun;Kim, Gi-Myun;Lee, Sung-Kyung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.429-437
    • /
    • 2009
  • This study addresses the optimal shape of a LCVA maximizing its vibration control effect through numerical parametric study. Various LCVAs having the same total mass and tuning frequency are designed with constraints on the dimensions and water level, and one obtaining the highest equivalent damping ratio of the controlled system is chosen as an optimal solution. As a result, it was found that the limit on the variation of the water level in the vertical liquid column plays an important role constraining the shape of the LCVA. As the LCVA width perpendicular to the plane of liquid motion increases, the equivalent damping ratio rises with slowdown so that determination of the proper width is important in design of the LCVA shape.

Optimal Supersonic Diffuser Design of Integrated Rocket Ramjet Engine (IRR형 Ramjet Intake 초음속 확산부 형상 최적설계)

  • 민병영;이재우;변영환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.65-74
    • /
    • 2002
  • Optimal supersonic diffuser shape of integrated rocket ramjet engine was derived which maximizes the total pressure recovery. Mass flux is considered as a design constraint and the second oblique shock angle of the external ramp, the cowl-lip angle and the throat area are selected as design variables. Refined response surface method through design space transformation technique was developed and employed, and high confidence level of the regression model could be obtained. Genetic algorithm was implemented for both system optimizer and subspace regression model optimization. Virtual nozzle was located at the end of throat to adjust the back pressure. With only 20 aerodynamic analyses, optimal supersonic diffuser shape which has 14% improved total pressure recovery characteristics was successfully designed.

Shape Scheme and Size Discrete Optimum Design of Plane Steel Trusses Using Improved Genetic Algorithm (개선된 유전자 알고리즘을 이용한 평면 철골트러스의 형상계획 및 단면 이산화 최적설계)

  • Kim, Soo-Won;Yuh, Baeg-Youh;Park, Choon-Wok;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.89-97
    • /
    • 2004
  • The objective of this study is the development of a scheme and discrete optimum design algorithm, which is based on the genetic algorithm. The algorithm can perform both scheme and size optimum designs of plane trusses. The developed Scheme genetic algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of structures and the constraints are limits on loads and serviceability. The basic search method for the optimum design is the genetic algorithm. The algorithm is known to be very efficient for the discrete optimization. However, its application to the complicated structures has been limited because of the extreme time need for a number of structural analyses. This study solves the problem by introducing the size & scheme genetic algorithm operators into the genetic algorithm. The genetic process virtually takes no time. However, the evolutionary process requires a tremendous amount of time for a number of structural analyses. Therefore, the application of the genetic algorithm to the complicated structures is extremely difficult, if not impossible. The scheme genetic algorithm operators was introduced to overcome the problem and to complement the evolutionary process. It is very efficient in the approximate analyses and scheme and size optimization of plane trusses structures and considerably reduces structural analysis time. Scheme and size discrete optimum combined into the genetic algorithm is what makes the practical discrete optimum design of plane fusses structures possible. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying the algorithm to various optimum design examples: plane pratt, howe and warren truss.

  • PDF

Lightweight Automobile Design with ULSAB Concept Using Structural Optimization (구조 최적설계 기법을 이용한 초경량차체 개념의 경량 자동차 설계)

  • 신정규;송세일;이권희;박경진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.277-286
    • /
    • 2001
  • Among the ULSAB methods for the lightweight automobile body, Tailor Welded Blank(TWB) is adopted and the design process is developed for the existing component. Topology optimization conducted to find the distribution of the variable thickness. The number of parts and the welding lines are determined from it. In the detail design, size optimization is carried out to find the optimum thickness of each part and then, the final parting lines are tuned by shape optimization. A commercial optimization software GENESIS is utilized for the optimization processes.

  • PDF

Design Optimization of Moving-Coil Type Linear Actuator Using Level Set Method and Phase-Field Model (레벨셋법과 페이즈 필드 모델을 이용한 가동코일형 리니어 액추에이터 최적설계)

  • Lim, Sung-Hoon;Oh, Se-Ahn;Min, Seung-Jae;Hong, Jung-Pyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1223-1228
    • /
    • 2011
  • A moving-coil type linear actuator has been widely used in the system reciprocating short stroke because of its several advantages, such as the structural simplicity, low weight and a fast control response speed. This paper presents a design approach for improving the actuating performance with a clear expression of optimal configuration represented by a level set function. The optimization problem is formulated to minimize the variation of magnetic force at every moving displacement of the mover for fast and easy control. To consider the manufacturability of actuator, the concept of phase-field model is incorporated to control the complexity of structural boundaries. To verify the usefulness of the proposed method, the core design example of cylindrical linear actuator is performed.

Optimal Positioning of Heating Lines in a Compression Molding Die Using the Boundary Element Method (경계요소법을 이용한 압축성형다이 가열선의 최적위치 설계)

  • 이부윤;조종래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1478-1485
    • /
    • 1993
  • A shape optimization problem is formulated to determine the optimal position of heating lines in a compression molding die. The objective of the problem is that the cavity surface would be maintained by a prescribed uniform temperature. A boundary integral equation for the sensitivity of the temperature in terms of hole position is derived using the method of shape design sensitivity analysis. The boundary element method is employed to analyze the temperature and sensitivity field of the die. The sensitivity calculation algorithm is incorporated in an optimization routine. To demonstrate a numerical implementation, an example problem arising in thermal design of a compression molding die is dealt with, showing that the number of heating lines chosen for the die strongly affects the ultimate uniformity of the cavity surface temperature.

Optimal Section Design for Metal Press Door Impact Beam Development by 3-Point Bending Analysis (3점 굽힘 하중 해석을 통한 금속 판재형 도어 임팩트 단면형상 최적설계)

  • Kim, Sun-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.166-172
    • /
    • 2019
  • A case study was performed in order to develop well-designed of thin plate door impact beam. The conventional impact beam was consisted of steel-pipe welded two brackets on the both side, which causes low productivity and high cost. In order to overcome those disadvantage, it is necessary to develop a new type of door impact; thin plate impact beam. The thin plate impact beam was not needed a welding procedure, which can lead low cost and high productivity. In order to maximally resist from an external force, the cross-section design should be well designed. 6 different cross-section design were proposed based on engineer's experience. Three point bending test was simulated those 6 different impact beam and compared the reaction forces. Among them, one case was chosen and redesigned for detail design.