음성 인식 시스템은 정확하지 않게 입력된 음성으로부터 학습 모델을 구성하고 유사한 음소 모델로 인식하기 때문에 인식률 저하를 가져온다. 따라서 본 논문에서는 바타차랴 알고리즘을 이용한 음성 인식 최적 학습 모델 구성 방법을 제안하였다. 음소가 갖는 특징을 기반으로 학습 데이터의 음소에 HMM 특징 추출 방법을 이용하였으며 유사한 학습 모델은 바타챠랴 알고리즘을 이용하여 정확한 학습 모델로 인식할 수 있도록 하였다. 바타챠랴 알고리즘을 이용하여 최적의 학습 모델을 구성하여 인식 성능을 평가하였다. 본 논문에서 제안한 시스템을 적용한 결과 음성 인식률에서 98.7%의 인식률을 나타내었다.
강화학습은 에이전트(agent)가 주어진 환경(environment)과의 상호작용을 통해서 상태(state)를 변화시켜가며 최대의 보상(reward)을 얻을 수 있도록 최적의 행동(action)을 학습하는 기계학습법을 의미한다. 최근 알파고와 같은 게임뿐만 아니라 자율주행 자동차, 로봇 제어 등 다양한 분야에서 널리 사용되고 있다. 상수도관망 분야의 경우에도 펌프 운영, 밸브 운영, 센서 최적 위치 선정 등 여러 문제에 적용되었으나, 설계에 강화학습을 적용한 연구는 없었다. 설계의 경우, 관망의 크기가 커짐에 따라 알고리즘의 탐색 공간의 크기가 증가하여 기존의 최적화 알고리즘을 이용하는 것에는 한계가 존재한다. 따라서 본 연구는 강화학습을 이용하여 상수도관망의 구성요소와 환경요인 간의 복잡한 상호작용을 고려하는 설계 방법론을 제안한다. 모델의 에이전트를 딥 강화학습(Deep Reinforcement Learning)으로 구성하여, 상태 및 행동 공간이 커 발생하는 고차원성 문제를 해결하였다. 또한, 해당 모델의 상태 및 보상으로 절점에서의 압력 및 수요량과 설계비용을 고려하여 적절한 수량과 수압의 용수 공급이 가능한 경제적인 관망을 설계하도록 하였다. 모델의 행동은 실제로 공학자가 설계하듯이 절점마다 하나씩 차례대로 다른 절점과의 연결 여부를 결정하는 것으로, 이를 통해 관망의 레이아웃(layout)과 관경을 결정한다. 본 연구에서 제안한 방법론을 규모가 큰 그리드 네트워크에 적용하여 모델을 검증하였으며, 고려해야 할 변수의 개수가 많음에도 불구하고 목적에 부합하는 관망을 설계할 수 있었다. 모델 학습과정 동안 에피소드의 평균 길이와 보상의 크기 등의 변화를 비교하여, 제안한 모델의 학습 능력을 평가 및 보완하였다. 향후 강화학습 모델을 통해 신뢰성(reliability) 또는 탄력성(resilience)과 같은 시스템의 성능까지 고려한 설계가 가능할 것으로 기대한다.
기존의 SOFPNN은 데이터 수가 적고 비선형 요소가 많은 시스템에 대한 체계적이고 효율적인 최적 모델 을 구축할 수 있었으며 각 층 노드의 선택 입력을 변화시킴으로써 네트워크 구조 전체의 적응능력을 향상 시켰다. SOFPNN의 구조는 퍼지 다항식 뉴론(FPN)들로 구성되어 있으며, 층이 진행하는 동안 모델 스스로 노드의 선택과 제거를 통해 최적의 네트워크 구조를 생성할 수 있는 유연성을 가지고 있다. 그러나, 노드의 입력변수의 수와 규칙 후반부 다항식 차수 그리고 입력변수는 설계자의 경험 또는 반복적인 학습을 통해 선호된 네트워크 구조를 선택하였으나, 최적의 네트워크 구조를 구축하는데는 어려옴이 내재되어 있었다. 본 논문에서는 자기구성 퍼지 다항식 뉴럴네트워크(Self-Organizing Fuzzy Polynomial Neural Networks: SOFPNN)을 최적화시키기 위해 유전자 알고리즘을 이용하여 자기구성 퍼지 다항식 뉴럴 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하여 최적 의 자기구성 퍼지 다항식 뉴럴 네트워크를 구축한다. 따라서 모델 구축에 있어서 유연성과 정확성을 가지며 객관적이고 좀 더 정확한 예측 능력을 가진 SOFPNN 모델 구조를 구축할 수가 있다.
심층학습은 많은 양의 데이터셋을 학습에 활용하여 객체 분류, 검출, 분할 등의 영상 분석에 탁월한 성능을 나타내고 있다. 본 논문에서는 데이터셋의 종류가 다양한 얼굴 표정인식 데이터셋들을 활용하여 학습 데이터셋의 특성이 심층학습 성능에 영향을 줄 수 있음을 확인하고, 각 학습 데이터셋에 적합한 심층학습 모델의 구성 요소를 설정하는 방법을 제안한다. 제안하는 방법은 심층학습 모델의 성능에 영향을 주는 구성 요소인 활성함수, 그리고 최적화 알고리즘을 유전 알고리즘을 이용하여 선정한다. CK+, MMI, KDEF 데이터셋에 대해서 널리 활용되고 있는 심층학습 모델의 각 구성 요소별 다양한 알고리즘을 적용하여 성능을 비교 분석하고, 유전 알고리즘을 적용하여 최적의 구성 요소를 선정할 수 있음을 시뮬레이션을 통하여 확인한다.
본 논문에서는 분류 모델의 주류로 사용되고 있는 Encoder 기반 사전학습 모델(BERT, ALBERT, ELECTRA)의 내부 Encoder Layer가 하부 Layer에서는 Syntactic한 분석을 진행하고 상부 Layer로 갈수록 Semantic 한 분석을 진행하는 점, Layer가 구성됨에 따라 Semantic 정보가 Syntactic 정보를 개선해 나간다 점에 기반한 기존 연구 결과를 바탕으로 Encoder Layer를 구성함에 따라 어떻게 성능이 변화하는지 측정한다. 그리고 의도 분류를 위한 학습 데이터 셋도 분류하고자 하는 성격에 따라 Syntactic한 구성과 Semantic한 구성을 보인다는 점에 착안하여 ALBERT 및 ELECTRA를 이용한 의도 분류 모델을 구축하고 각 데이터 셋에 맞는 최적의 Encoder Layer 구성을 가지는 모델을 비교한 결과, 두 데이터 셋 간에 다른 Layer 구성을 보이는 점과 기존 모델보다 성능이 향상됨을 확인하였다.
신경회로망 설계 및 모델선택의 목표는 최적의 구조를 가지는 일반화 성능이 우수한 네트워크를 구성하는 것이다. 하지만 학습데이타에는 노이즈(noise)가 존재하고, 그 수도 충분하지 않기 때문에 최종적으로 표현하고자 하는 진확률 분포와 학습 데이타에 의해 표현되는 경험확률분포(empirical probability density) 사이에는 차이가 발생한다. 이러한 차이 때문에 신경회로망을 학습데이타에 대하여 과다하게 적합(fitting)시키면, 학습데이타만의 확률분포를 잘 추정하도록 매개변수들이 조정되어 버리고, 진확률 분포로부터 멀어지게 된다. 이러한 현상을 과다학습이라고 하며, 과다학습된 신경회로망은 학습데이타에 대한 근사는 우수하지만, 새로운 데이타에 대한 예측은 떨어지게 된다. 또한 신경회로망의 복잡도가 증가 할수록 더 많은 매개변수들이 노이즈에 쉽게 적합되어 과다학습 현상은 더욱 심화된다. 본 논문에서는 통계적인 관점을 바탕으로 신경회로망의 일반화 성능을 향상시키는 신경회로 망의 설계 및 모델 선택의 통합적인 프로세스를 제안하고자 한다. 먼저 학습의 과정에서 적응적 정규화가 있는 자연기울기 학습을 통해 수렴속도의 향상과 동시에 과다학습을 방지하여 진확률 분포에 가까운 신경회로망을 얻는다. 이렇게 얻어진 신경회로망에 자연 프루닝(natural pruning) 방법을 적용하여 서로 다른 크기의 후보 신경회로망 모델을 얻는다. 이러한 학습과 복잡도 최적화의 통합 프로세스를 통하여 얻은 후보 모델들 중에서 최적의 모델을 베이시안 정보기준에 의해 선택함으로써 일반화 성능이 우수한 최적의 모델을 구성하는 방법을 제안한다. 또한 벤치마크 문제를 이용한 컴퓨터 시뮬레이션을 통하여, 제안하는 학습 및 모델 선택의 통합프로세스의 일반화 성능과 구조 최적화 성능의 우수성을 검증한다.
본 논문에서는 단일 및 군말뚝의 수평변위와 최대 휨모멘트를 예측하기 위하여 인공신경망을 도입하였다. 인공신경망에 의한 결과는 낙동강 모래지반에서 단일 및 군말뚝에 대하여 수행한 일련의 모형실험결과와 비교하였다. 인공신경망 중의 하나인 오류 역전파 신경망(EBIPNN)의 적용성 검증을 위하여 600개의 모형실험결과들을 이용하였다. 그리고 신경망의 구조는 한개의 입력층과 두개의 은닉층 그리고 한개의 출력층으로 구성되었다. 전체 데이터의 25%, 50% 그리고 75% 결과는 각각 신경망의 학습에 이용되었으며 학슴에 이용하지 않은 데이터들은 예측에 이용되었다. 인공신경망 학습결과와 실험결과의 비교에 의하면, 신경망의 최적학습을 위하여 최적학습을 위하여 적합한 은닉층의 뉴런수는 각각 30개로 그리고 학습률은 0.9로 결정되었다. 전체 데이터의 50%이상으로 학습을 수행한 신경망의 모델은 정확한 예측을 하는 것으로 나타났다. 따라서, 인공신경망 모델리 수평하중을 받는 말뚝의 수평변위와 최대 휨모멘트의 예측에 적용될 수 있는 가능성을 보여주었다.
다양한 분야에서 현재 활용되고 있는 딥러닝 과정은 데이터 준비, 데이터 전처리, 모델 생성, 모델 학습, 모델 평가로 구성 된다. 이중 모델 학습 과정에서 손실함수는 모델이 학습하면서 출력한 값을 실제 값과 비교하여 그 차이를 출력하게 되고, 출력된 손실값을 기반으로 모델은 역전파 알고리즘을 통해 손실값이 감소하는 방향으로 가중치를 수정해가며 학습을 진행한다. 본 논문에서는 바이오마커 추출을 위한 딥러닝 모델에서 사용될 신경망 출력 값의 손실도를 측정하여 출력해주는 다양한 손실함수를 분석하고 실험을 통해 최적의 손실함수를 찾아내고자 한다.
다층 신경회로망의 모델의 크기는 적용분야에 따라서 임의로 선택되어지고, 최적의 네트워크 크기는 긴 시간에 걸친 시행착오를 통하여 결정된다. 본 논문에서는 은닉충의 뉴런 수를 학습 과정에서 유동적으로 결정하는 역전파 알고리즘을 제안한다. 기존의 Narendra의 모델의 동정에 대하여 제안한 알고리즘의 유용성을 비교 검토하였다.
강화학습은 한 환경에서 에이전트가 정책에 따라 액션을 취하고 보상 함수를 통해 액션을 평가 및 정책 최적화 과정을 반복하는 Closed-Loop 구조로 이루어진 알고리즘이다. 이러한 강화학습의 주요 장점은 액션의 품질을 평가하고 정책을 지속적으로 최적화 하는 것이다. 따라서, 강화학습은 지능형 시스템, 자율제어 시스템 개발에 효과적으로 활용될 수 있다. 기존의 강화학습은, 단일 정책, 단일 보상함수 및 비교적 단순한 정책 업데이트 기법을 제한적인 문제에 대해 제시하고 적용하였다. 본 논문에서는 구성요소의 복수성을 지원하는 확장된 강화학습 모델을 제안한다. 제안되는 확정 강화학습의 주요 구성 요소들을 정의하고, 그들의 컴퓨팅 모델을 포함하는 정형 모델을 제시한다. 또한, 이 정형모델을 기반으로 시스템 개발을 위한 설계 기법을 제시한다. 제안한 모델을 기반으로 자율 최적화 자동차 내비게이터 시스템에 적용 및 실험을 진행한다. 제시된 정형 모델과 설계 기법을 적용한 사례연구로, 복수의 자동차들이 최적 목적지에 단 시간에 도착할 수 있는 진화된 내비게이터 시스템 설계 및 구현을 진행한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.