• Title/Summary/Keyword: 최적 캠 형상설계

Search Result 11, Processing Time 0.729 seconds

Optimum Cam Profile Design and Experimental Verification on an OHC Type Cam-valve System (OHC형 캠-밸브 기구의 최적 캠 형상설계 및 실험적 검증)

  • 김성훈;김원경;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2049-2058
    • /
    • 1992
  • In this work, a 6 degree of freedom lumped mass model is constructed for an OHC-type cam valve train analysis, and the model is verified experimentally. Using the verified model, an optimum cam profile is designed to minimize the maximum contact force between cam and follower under the constraints such as cam lift and cam event angle. The designed cam was carefully machined and tested experimentally. As operating the designed cam shaft on the test rig, the valve motion was precisely measured with laser displacement meter and the contact force was indirectly monitored by measuring strain at a certain point of the finger follower. Judging from the model simulation and experiment results, the maximum contact force can be reduced as much as more than 16.7 percent under maintaining the original valve flow area by adopting the optimum cam profile.

A Multi-Polynomial Synthesis Method for DRRD Cam Profile Optimizations and Effects of Shape Factors on the Cam Lobe Area (DRRD 캠 형상 최적 설계를 위한 다항식 합성법과 캠 로우브 면적에 미치는 형상 계수들의 영향)

  • 김도중;박성태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.59-71
    • /
    • 1994
  • A multi-polynomial method is proposed to synthesize DRRD cam profiles. A cam lift duration s divided into 10 sections, each of them is expressed by a polynomial equation. 12 design variables are extracted from the cam profile displacement, velocity, and acceleration curves. Because all the design variables have physical meanings which are familiar to most cam designers, it is easy to imagine a profile shape from the design variables. The design envelope of the method is wide enough to be used in DRRD automotive cam designs. Polydyne cams, widely used in automotive engines, are included into the envelope. Unlike Polydyne cams, the method provides capability of wide velocity factor variations, which gives much flexibility in flat-faced tappet design. Area factor of profiles designed by the method can be increased 5-10% compared to those of Polydyne cams without increasing acceleration factor. The method is especially useful for cam profile optimizations.

  • PDF

A Study on Dynamic Simulation and Cam Profile Optimization for OHV Type Valve Trains (OHV형 밸브트레인의 동특성 해석 및 최적 캠 형상설계에 관한 연구)

  • 김도중;윤수환;박병구;신범식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.110-122
    • /
    • 1996
  • The objective of this study is to understand the dynamic characterictics of OHV type valve trains and to design and optimal cam profile which will improve engine performance. A numerical model for valve train dynamics is presented, which aims at both accuracy and computational efficiency. The lumped mass model and distributed parameter model were used to describe the valve train dynamics. Nonlinear characterictics in the valve spring behavior were included in the model. Comprehensive experiments were carried out concerning the valve train dynamics, and the model was tuned based on the test results. The dynamic model was used in designing an optimal cam profile. Because the objective function has many local minima, a conventional local optimizer cannot be used to find an optimal solution. A modified adaptive random search method is successfully employed to solve the problem. Cam lobe area could be increased up to 7.3% without any penalties in kinematic and dynamic behaviors of the valve train.

  • PDF

A Study on the Optimal Design of Automotive Cam Profiles using Hermite Curve (Hermite 곡선을 이용한 자동차 엔진 캠 형상의 최적 설계에 관한 연구)

  • 김도중;김원현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.129-140
    • /
    • 1998
  • A numerical method is proposed to optimize automotive cam profiles. An acceleration curve of a cam follower motion is described by Hermite spline curves. Because of the intrinsic characteristics of the Hermite curve, it is possible to design an acceleration curve with arbitrary shape. Design variables in the optimization problem are location of control points which define the acceleration curve. Objective function includes dynamic performances as well as kinematic properties of a valve train. Similar optimization procedure was also performed using Polydyne cam profile synthesis method. Optimized profiles using the Hermite curve are proved to be superior to those using the Polydyne method.

  • PDF

A simulation model of valve train dynamics for cam profile optimizations (캠 형상 최적설계를 위한 밸브 트레인 동특성 해석 모델)

  • 김도중
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.53-63
    • /
    • 1993
  • A numerical modeling technique is proposed for computer simulations of high speed valve train dynamic terms in the valve spring reaction forces are calculated using linear vibration theory for given kinematic valve motions. Because the spring dynamics are analyzed before the time stepping integration, spring surge phenomena can be included without using additional computer time. In addition to that, steady state response of the valve dynamics can be obtained by just one cycle simulation. Consequently, valve train dynamics can be simulated very quickly without noticeable errors in accuracy. The experimental result prove the computer model developed here is accurate and also computationally efficient. The model is especially useful for cam profile optimizations.

  • PDF

Optimal Design of a Variable-Speed Cam for Power Circuit Breaker (고압 회로차단기의 비등속 회전 캠의 최적설계)

  • Kim, Jun-Hyeong;An, Gil-Yeong;Kim, Su-Hyeon;Gwak, Yun-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.47-53
    • /
    • 2001
  • Power Circuit Breaker uses a variable-speed cam mechanism actuated by pre-loaded spring force. This paper presents the optimal design procedure for a variable-speed cam mechanism based on the dynamic model of a complete spring-actuated cam system. The optimal cam is compared with an original cam. Simulation results show that the dynamic behaviors of the designed cam are superior to those of the original cam.

  • PDF

Optimum Cam Profile Design of VTR Deck Using the Response Stuface Analysis (반응표면분석법을 이용한 VTR Deck 캠의 최적형상 설계)

  • Han, Hyeong-Seok;An, Hyeong-Jin;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.788-795
    • /
    • 1996
  • In this paper, and optimum profile of a cam being used in a VTR Deck mechanism is designed by the response surface analysis. The objective function of the design is to reduce driving torque of the pinch roller system that is used to compress video tape to the capstan motor axia. The pinch roller system that will be designed is modeled using the general purpopse mechanism analysis program DADS. The computer model is compared with the physical system for reliability. A model function to represent relationship between design variables and the objective function is estimated by the response surface analysis. Once the model function is reliably estimated the optimal design is carried out using the model function and each design variable's boundaries. To verify improvement of the pinch roller system, a prototype for the pinch rooler system is made and tested. From the test result, an optimum cam profile to resuce driving torque of the pinch roller system is verified.

Cam Profile Design of a Fuel Pump Using Dynamic Analysis (동해석을 이용한 연료펌프의 캠 형상 설계)

  • Kim Bong-Ho;Lee Boo-Youn;Kim Won-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.58-64
    • /
    • 2006
  • This work focuses on reducing the noise and vibration levels of an LPi fuel pump, which are generated from the dynamic motions of pump elements and non-uniform flow of fuel. The noise and vibration levels increase as the revolution speed of the cam goes up. The fuel pump consists of five cavity cells, plungers and diaphragms, which are driven by the cam. The optimal design of the cam profile is performed to decrease the accelerations of moving Parts and to obtain a smooth hydraulic force through a dynamic analysis of a cam-plunger mechanism. The cam-Plunger with a cavity is modeled as a 2 degrees of freedom system having non-linear contacts, the cam profile being represented in terms of Fourier series in order to determine the optimal shape of the cam. From the optimized cam Profile, the acceleration of the diaphragm is reduced in $78\%$, the hydraulic force becoming smoother in case that the hydraulic force is rapidly dropped.

Aerodynamic Design Optimization of Airfoils for WIG Craft Using Response Surface Method (반응표면법을 이용한 지면효과익기 익형의 공력 설계최적화)

  • Kim, Yang-Joon;Joh, Chang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.18-27
    • /
    • 2005
  • Airfoils with improved longitudinal static stability were designed for a WIG craft through aerodynamic design optimization. The response surface method is coupled with NURBS-based shape functions and Navier-Stokes flow analysis. The procedure runs in the network-distributed design framework of commercial-code based automated design capability to enhance computational efficiency and robustness.Lift maximization design maintaining similar static margin to a DHMTU airfoil successfully produced a new airfoil shape characterized by pronounced front-loading and the well-known reflexed aft-camber line. Another airfoil design of lower variation in pitching moment during take-off showed weakened front-loaded characteristics and hence decreased lift slightly. Investigations using the present design methodology on an existing optimization result based on potential flow analysis and NACA-type geometry generation demonstrated significance of carrying various geometry generations and more realistic flow analysis with optimization.

서초프로젝트A 오피스텔 현장의 SHOP DWG

  • Kim, Hyeon-Ung
    • 월간 기계설비
    • /
    • no.11 s.184
    • /
    • pp.57-71
    • /
    • 2005
  • SHOP DWG의 현주소 어디까지 왔는가? 설계에서 제조에 이르는 전 과정을 컴퓨터로 제어하고 관리하는 기술. 캐드(CAD)와 캠(CAM)은 각각 computer-aided design,computer-aided manufacturing의 약칭으로 컴퓨터보조설계와 컴퓨터보조생산을 뜻한다. CAD는 설계도면을 한 장씩 수작업으로 제도하지 않고 설계 데이터베이스의 정보를 CRT(cathode ray tube)에서 화상을 보고 합성하면서 설계하므로 작업을 최적화 할 수 있다. CAD로 설계된 설계도의 내용은 CAM을 통해 NC(수치제어)공작기계에 정확한 작업동작을 지시하게 되며, 작업관리∙가공∙조립∙검사 등의 제조과정을 컴퓨터로 관리하여 작업속도와 제품의 정밀성을 높이게 된다. 최근에는 건축현장의 2D system이 보편화되어 있지만 건축현장의 핵심이라고 할 수 있는 기계설비의 기계실, 또는 조립화 공법 등에는 3차원 CAD∙CAM시스템이 개발되어 입체형상을 화면에 3차원으로 재현할 수 있고, 대상물의 표면적∙부피∙무게∙강도 등의 물리적 성질도 자동 계산하여 최적상태에서 현장의 시공에 적용할 수 있게 되었다. 1960년대 초 미국에서 자동차 모델∙엔진, 항공기 부품 등 의 설계에 수작업의 한계를 느껴 개발되었으며, 한국에서는 70년대 중반에 도입되어 운용되고 있다. 이에 따라 프로그램 회사들은 다양한 방법 등을 SHOP DWG에 적용하여 판매경쟁이 치열하다. (주)우진아이엔에스는 급속한 산업경제의 변화와 무한경쟁시대에 보다 나은 기술개발 투자에도 노력을 기울여, 2000년 11월 용인공장, 생산라인을 천안으로 이전, 확장 하여 배관 및 닥트의 CAD-CAM SYSTEM, P.F.P공법, 기계실3D, 블럭화배관, 닥트자동화 시스템, 설계, 용접공정을 공장화시켰으며, 신 개발품인 S.C.D(SEMI-CON DUCT)를 신설하여 모든 건축물에 맞는 필수적인 제품을 생산함으로써 선택의 폭을 넓히고, 현장 시공능력 효율을 높이고 있다. 이번 호에서는 (주)우진아이엔에스가 95년 설계팀을 발족하여 제로시스템의 3D공법을 공장 및 현장의 SHOP DWG에 적용해왔고 최근에는“서초 프로젝트A”현장에 SHOP DWG의 최대 결집체인 3D활용의 조립화 공법을 적용하여 초고층 오피스텔현장을 시공한 사례를 게재한다. 우진아이엔에스는 30여년의 기술 축척을 바탕으로 최고의 기술력과 풍부한 경험을 통해 아셈무역센타, 타워팰리스1차, 3차 및 목동트라팰리스, 분당트리폴리스, 수원삼성전자 R4, 등 국내굴지의 초고층빌딩 시공을 근거로 초고층의 기본설계를 이해하고 SHOP DWG을 통해서 기계설비공사의 향후 나아갈 지표를 제시하고 있다.

  • PDF