• Title/Summary/Keyword: 최적 적용기간

Search Result 370, Processing Time 0.027 seconds

Financial Feasibility Study by Considering Risk Factors for High-Rise Development Project (초고층 개발사업의 리스크 요인을 고려한 재무적 타당성 분석)

  • Chun, Young-Jun;Cho, Joo-Hyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.4
    • /
    • pp.3-16
    • /
    • 2017
  • Forecasting cash flow is very important but is difficult and complicated to analysis in high-rise development projects. And An expected value which was forecasted on the early stage is likely to fluctuate due to uncertainties around such complicated huge project to consider the probable uncertainty. There are not objectified method which are able to cope with uncertainty of project, and feasibility study based on selected financial analysis does not include liquidity of cash flow. Through such a stochastic method, developer can cope with cash flow fluctuation and set up a financial plan. Also this study is meaningful for laying the foundation for high-rise development project and feasibility study as well as the suitability and accuracy of feasibility study. Analysis showed that NPV and IRR include residential apartments shows surplus revenue as return of apartments offset deficit of hotel and office. Factors influencing the project feasibility for high-rise development project are sales account of $1^{st}$ year and annual vacancy rate of office.

A Study on Random Selection of Pooling Operations for Regularization and Reduction of Cross Validation (정규화 및 교차검증 횟수 감소를 위한 무작위 풀링 연산 선택에 관한 연구)

  • Ryu, Seo-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.161-166
    • /
    • 2018
  • In this paper, we propose a method for the random selection of pooling operations for the regularization and reduction of cross validation in convolutional neural networks. The pooling operation in convolutional neural networks is used to reduce the size of the feature map and for its shift invariant properties. In the existing pooling method, one pooling operation is applied in each pooling layer. Because this method fixes the convolution network, the network suffers from overfitting, which means that it excessively fits the models to the training samples. In addition, to find the best combination of pooling operations to maximize the performance, cross validation must be performed. To solve these problems, we introduce the probability concept into the pooling layers. The proposed method does not select one pooling operation in each pooling layer. Instead, we randomly select one pooling operation among multiple pooling operations in each pooling region during training, and for testing purposes, we use probabilistic weighting to produce the expected output. The proposed method can be seen as a technique in which many networks are approximately averaged using a different pooling operation in each pooling region. Therefore, this method avoids the overfitting problem, as well as reducing the amount of cross validation. The experimental results show that the proposed method can achieve better generalization performance and reduce the need for cross validation.

Phosphorus Removal in Wastewater Using Activated Ca-Loess Complex

  • Kang, Seong Chul;Lee, Byoung Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.713-721
    • /
    • 2012
  • In many instances phosphorus is a limiting factor for eutrophication in streams, and lakes. Because wastewater treatment plant itself may be the main phosphorus source in a natural water body, removal of phosphorus in final effluent of wastewater treatment processes is required. Amongst various technologies for phosphorus removal in wastewater, adsorption technology was investigated using activated Ca-loess complex. Ca was added in loess to enhance adsorption capacity and intensity of phosphorus. Ca added loess was activated at a high temperature of $400^{\circ}C$ which turned out to be the optimum temperature. Activated Ca-loess complex below $400^{\circ}C$ had not enough strength to be applied as an activated Ca-loess pallet column in wastewater treatment process. Ca-loess complex which activated above $400^{\circ}C$ lost its adsorption capacity as the loess surface was glassified when the activation temperature reached above $400^{\circ}C$20. Even if adsorption capacity of activated Ca-loess was not very high due to the lack of abundant pores on its surface, adsorption intensity was still high because it was activated with added Ca in loess. Activated loess was made by pallets. The activated loess pallets were filled in a column, and were applied in wastewater treatment process. Using an activated Ca-loess pallet column, total phosphorus (T-P) was reduced from about 0.5 mg/l to lower than 0.1 mg/l in wastewater treatment, and ionic phosphorus (phosphate) was completely removed for the four months of pilot plant operation.

Additive hazards models for interval-censored semi-competing risks data with missing intermediate events (결측되었거나 구간중도절단된 중간사건을 가진 준경쟁적위험 자료에 대한 가산위험모형)

  • Kim, Jayoun;Kim, Jinheum
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.4
    • /
    • pp.539-553
    • /
    • 2017
  • We propose a multi-state model to analyze semi-competing risks data with interval-censored or missing intermediate events. This model is an extension of the three states of the illness-death model: healthy, disease, and dead. The 'diseased' state can be considered as the intermediate event. Two more states are added into the illness-death model to incorporate the missing events, which are caused by a loss of follow-up before the end of a study. One of them is a state of the lost-to-follow-up (LTF), and the other is an unobservable state that represents an intermediate event experienced after the occurrence of LTF. Given covariates, we employ the Lin and Ying additive hazards model with log-normal frailty and construct a conditional likelihood to estimate transition intensities between states in the multi-state model. A marginalization of the full likelihood is completed using adaptive importance sampling, and the optimal solution of the regression parameters is achieved through an iterative quasi-Newton algorithm. Simulation studies are performed to investigate the finite-sample performance of the proposed estimation method in terms of empirical coverage probability of true regression parameters. Our proposed method is also illustrated with a dataset adapted from Helmer et al. (2001).

3D Digital Design Optimization Process Considering Constructability of Freeform Structure (비정형 구조물의 시공성을 고려한 3차원 디지털 설계 최적화 프로세스)

  • Ryu, Han-Guk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.5
    • /
    • pp.35-43
    • /
    • 2013
  • Nowadays the widely used media in architecture include visualizations, animations and three-dimensional models. 3D digital methods using active CAM(Computer Aided Manufacturing) and CNC(Computerized Numerical Control) imaging have been developed for accurate shape and 3D measurements in freeform buildings. In contrast to a conventional building using auto CAD system and others, the proposed digital optimization method is based on a combination of 3D numerical data and parametric 3D model for design and construction. The objective of this paper is therefore to present digital optimization process for constructability of freeform building. The method can be useful in the effective implementation of an error-proofing process of freeform building during design and construction phase. 3D digital coordinate data can be used effectively to identify correct size of structural and finish members and installation location of each members in construction field. In addition, architects, engineers and contractors can evaluate design, materials, constructability and identify error-proofing opportunities. Other project participants can also include representatives from all levels of management, departments as well as workers and key subcontractors' personnel, if necessary. The 3D digital optimization process is therefore appropriate to serious variations in freeform shape. For future study, the developed digital optimization method is necessary to be carried out to verify the robustness and accuracy for constructability in construction field.

A Case Study for Applying Linear Programming to Analyze The Effects of The Desired Future Conditions for Forest Functions on Forest Management (산림기능별 목표임상 조건이 산림경영에 미치는 영향분석을 위한 선형계획기법 적용 연구)

  • Jang, Kwangmin;Won, Hyun-Kyu;Seol, A Ra;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.247-254
    • /
    • 2009
  • In this study, linear programming was applied to a case study in Gwangreung Experimental Forest of Korea Forest Research Institute investigating the effect of the desired future conditions on forest management. Considering the social, economic and ecological demands of people from the forest, the forest functions were classified into four including natural conservation, timber production, water yield and scenic conservation. The forest land areas were divided into four-types of forest functional zones and forest management prescriptions including the desired future conditions by the forest function type were established. The Model II linear programming was used in optimizing the forest management planning. The model includes management policies, as the constraints, for non-declining yield, allowable cutting area, allowable % age class distribution and allowable % species allocation as well as the land and other accounting regimes. Maximization of timber production was used the objective function. Based on the Model II formulations, the effects of the desired future conditions by the forest function type on forest management planning were investigated in terms of timber production, net present value and stand structures over time.

Fresh Water Injection Test to Mitigate Seawater Intrusion and Geophysical Monitoring in Coastal Area (해수침투 저감을 위한 담수주입시험 및 지구물리 모니터링)

  • Park, Kwon-Gyu;Shin, Je-Hyun;Hwang, Se-Ho;Park, In-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.353-360
    • /
    • 2007
  • We practiced fresh water injection test to identify its applibility as a method of seawater intrusion mitigation technique, and monitored the change of borehole fluid conductivity and the behavior of injected fresh water using borehole multichannel electrical conductivity monitoring and well-logging, and DC resistivity and SP monitoring at the surface. Well-logging and multichannel EC monitoring showed the decrease of fluid conductivity due to fresh water injection. We note that such an injection effect lasts more than several month which means the applibility of fresh water injection as a seawater intrusion control technique. Although SP monitoring did not show meaningful results because of weather condition during monitoring and the defects of electrodes due to long operation time, DC resistivity monitoring showed its effectiveness and applicability as a monitoring and assessment techniques of injection test by means of imaging the behavior and the front of fresh water body in terms of the increase of resistivity with reasonable resolution. In conclusion, we note that geophysical techniques can be an effective method of monitoring and evaluation of fresh water injection test, and expect that fresh water injection may be an practical method for the mitigation of seawater intrusion when applied with optimal design of injection well distribution and injection rate based on geophysical evaluation.

Calculation of Non-Working Days due to Weather Factors during Structural Steel Works (기후요소에 의한 철골공사 작업불가능일 산정에 관한 연구)

  • Lee, Duk-Hyung;You, Jung-Sik;You, Jae-Kil;Jung, Jae-Hun;Jung, Hee-Kyung;Yu, Jung-Ho;Kim, Chang-Duk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.4 s.32
    • /
    • pp.137-145
    • /
    • 2006
  • Calculating non-working days is very important element for the accurate estimation of construction time. And non-working days are largely affected by weather factors such as rainfall, wind velocity, snowfall and temperature. In the case of concrete works, there are lots of referable information for the calculation of non-working days due to the weather factors. However, for the structural steel works, there are very limited information only. Through literature survey and interviews with a few engineers, this paper established the weather factors that affect steel structural works and the impact of those factors. Based on the factors and the expected impact of the factors together with the weather data during the last 15 years in Seoul region gathered from Korea Meteorological Administration, this paper suggests the monthly non-working day of structural steel work due to weather factors. This information can be used for the early estimation of construction time.

Analysis of breaching behavior of levee according to coating thickness of new substance (신소재의 피복두께에 따른 제방의 붕괴 거동 분석)

  • Ko, Dong Woo;Kim, Sung Joong;Kang, Joon Gu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.480-480
    • /
    • 2018
  • 전 세계적으로 자연 친화, 하천생태계 보전, 친수하천 등을 조성하기 위한 대대적인 하천 정비사업이 활발히 진행 중에 있다. 최근 홍수로 인한 제방 붕괴에 대응하기 위한 제방의 안정화 및 개선을 위한 방법으로 기존의 시멘트와 같은 혼합물질을 사용하지 않고 환경 친화적이고 지속 가능한 대안에 대한 수요가 증가되고 있는 추세이며 현재 노후화 된 불안정 제방에 대한 보강대책을 수립해나가는 과정으로써 친환경 신소재를 활용하여 제방을 보호하는 연구가 수행되고 있다. 제방사면에 적용되는 신소재는 바이오폴리머를 활용한 재료로써 공동연구기관 카이스트에서 개발된 환경 친화적인 물질로 미생물에 의해 유도된 고인장 및 인체 무해성 등의 특성을 갖고 있으며 경제적 타당성인 측면에서 시멘트와 비교 분석 되어야 하고 실제 현장에서의 적용 가능성, 신뢰성 및 내구성 검토 등 성능을 보장하기 위한 지속적인 연구가 필요한 상황이다. 이에 본 안동하천실험센터에서는 중규모 제방을 직접 제작하여 수리모형실험을 통한 친환경 신소재 활용 제방의 안정성 및 성능 평가를 실시하였다. 수리실험 조건은 카이스트에서 제시된 레시피를 기반으로 먼저 분말형태의 바이이폴리머를 물과 희석하여 만들어진 바이오폴리머 용액을 흙과 혼합한 뒤 제방표면에 직접 미장작업을 수행하여 실험조건에 따라 일정한 두께(1cm, 3cm, 5cm)로 피복하였다. 이후 월류 붕괴 실험이 가능한 3 - 5일 정도의 양생기간을 거쳐 실험을 진행하였다. 실험결과는 다수의 고프로(GoPro) 및 비디오 카메라 등 다양한 영상장치를 이용하여 픽셀기반의 영상분석기법을 활용한 시간 흐름에 따른 제방 사면에서의 붕괴규모를 산정하여 신소재의 피복 두께에 따른 제체의 붕괴 거동 및 안정성을 평가하였으며, 또한 제방 파괴부에서의 흐름 상황 및 유속이 붕괴 발달에 미치는 영향을 분석하기 위하여 PIV 분석을 실시하였다. 이번 연구의 최종목표는 지속적인 예비실험을 수행하여 월류 및 침투, 파이핑 등 파괴 인자 별 신소재의 성능 개선 및 개발된 새로운 공법에 대한 효과 검토를 통한 최적안을 도출함으로써 향후 실규모 실험실증을 통한 신소재 시공 및 공법에 대한 현장적용 가능성 검증을 거쳐 최종적으로 신소재 제방 공법 설계 기술, 신소재 및 공법 표준안, 제방공법 안정성 평가 가이드라인 등을 제시하고자 하며, 이러한 실험데이터를 축적함으로써 실제 제방 붕괴 시 비상대처계획 수립에 필요한 기초자료로 활용이 가능할 것으로 사료된다.

  • PDF

Study on ALDT Optimal Setting Considering Retention Level of Repair Items (수리품목 보유수준을 고려한 ALDT 최적화 설정방안 연구)

  • Jun, Joon-Hyung;Hwang, Kyoung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.269-275
    • /
    • 2020
  • RAM of elements to support weapon systems is conducted at the initial development phase and standard is suggested to accomplish strategy requirement performance from a design spec. Operational availability is a key point of the military's ability to ensure combat readiness and to win the battle. In the weapon system development phase, operational availability is used as a development standard. The military provides ALDT, operation and standby time, which are elements of operational availability. ALDT is a key element of operational availability that must be maintained for combat readiness, as it depends on the aging of a weapon system, maintenance policies and geographical conditions. Operational Availability to be set at the development phase has many differences from the operational availability that is analyzed in the actual operational phase because ALDT is applied as a simple assumption. In the paper, we analyzed ALDT applying the decision tree method through failure data acquired from initial operation. Through this study, we have devised the optimal ALDT setting method to achieve operational availability about operation when the weapons system is unstable.