Journal of the Korea institute for structural maintenance and inspection
/
v.12
no.6
/
pp.241-248
/
2008
The objective of sensitivity analyses is to identify critical variables of structural models and how their variability impacts mechanical response results. The sensitivity analyses have been used as significant basis data for practical applications of measuring and reinforcing fragile building structures. This study presents several sensitivity analysis methods for topological optimum designs of linear elastostatic structural systems. Numerical examples for structural analyses and topological optimum modeling demonstrate the reliability of sensitivities formulated in the present study.
Proceedings of the Computational Structural Engineering Institute Conference
/
2009.04a
/
pp.412-415
/
2009
본 논문에서는 등기하 해석법을 이용하여 설계 의존형 하중조건을 갖는 구조물에 대한 형상 최적설계 를 수행하였다. 유한요소 기반 형상 최적설계는 설계영역 매개화에 어려움이 있으나 등기하 해석법은 NURBS 기저 함수와 조정점을 이용함으로써 기하학적 표현이 용이하다는 장점을 가지고 있다. 기하학적으로 정확한 모델은 응답 및 설계민감도 해석에 사용되며, 설계구배 기반의 최적화에 있어서 중요한 역할을 한다. 하중조건이 설계영역의 변화에 따라 변하는 최적설계 문제에서 경계에서 설계민감도가 부정확한 경우, 설계공간에서 최적설계가 균일한 수렴성을 갖기 어렵다. 즉 유한요소법을 이용한 형상 최적설계에서 설계 의존형 하중조건을 갖는 문제를 푸는 경우, 최적설계를 진행할 때 변하는 경계의 부정확성 때문에 정확한 설계민감도를 얻기가 어려운 점이 있다. 본 논문에서는, 엄밀한 기하형상을 표현하는 등기하 설계민감도를 활용한 형상 최적설계 기법이 설계 의존형 하중조건을 갖는 문제에서 좋은 결과를 제시함을 확인하였다.
Proceedings of the Computational Structural Engineering Institute Conference
/
2009.04a
/
pp.101-104
/
2009
최적설계는 설계자가 요구하는 제한조건을 만족시키는 범위에서 목적함수가 최소가 되는 설계점을 찾는 방법이다. 그러나 기존의 최적설계는 불확실성의 영향을 고려하지 않아 최적해가 제한조건의 경계에 위치하고 이것은 모델링과정이나 가공 등으로 인한 오차에 대한 영향을 고려하지 않는 문제점이 있다. 신뢰성 기반 최적설계는 불확실성을 정량화하면서 신뢰도를 계산하는 신뢰도 해석과정과 최적설계과정을 포함한다. 일반적으로 신뢰성 해석은 크게 추출법, 급속 확률 적분법, 모멘트 기반 신뢰성해석이 있다. 가장 널리 사용되는 급속 확률 적분법 중 최대 손상 가능점(MPP) 방법은 많은 MPP점이 존재하는 경우 수치적 비용이 증가하는 문제점과 표준 정규분포 공간으로 변환하는 과정에서 제한조건의 비선형성을 증가시켜 큰 오차를 발생시키는 문제점이 있다. 본 논문에서는 RBDO를 수행하기에 앞서 선행되어야 할 신뢰성해석 방법으로 곱분해기법을 사용하였고 이로부터 민감도 정보를 유도하여 기울기 기반 최적화 알고리즘을 적용하였다.
Transactions of the Korean Society of Mechanical Engineers A
/
v.35
no.2
/
pp.163-168
/
2011
Robust optimization or reliability-based design optimization are some of the methodologies that are employed to take into account the uncertainties of a system at the design stage. For applying such methodologies to solve industrial problems, accurate and efficient methods for estimating statistical moments and failure probability are required, and further, the results of sensitivity analysis, which is needed for searching direction during the optimization process, should also be accurate. The aim of this study is to employ the function approximation moment method into the sensitivity analysis formulation, which is expressed as an integral form, to verify the accuracy of the sensitivity results, and to solve a typical problem of reliability-based design optimization. These results are compared with those of other moment methods, and the feasibility of the function approximation moment method is verified. The sensitivity analysis formula with integral form is the efficient formulation for evaluating sensitivity because any additional function calculation is not needed provided the failure probability or statistical moments are calculated.
Proceedings of the Computational Structural Engineering Institute Conference
/
2009.04a
/
pp.131-134
/
2009
Krylov 부공간 모델차수축소법은 초기 유한요소모델과 축소모델의 전달함수의 계수인 모멘트를 일치시키는 방법을 이용하는 축소기법으로 이미 대형 유한요소모델의 주파수응답 해석의 효율적인 계산에 많이 사용되고 있는 방법 중의 하나이다. 본 논문에서는 Krylov 부공간 축소기법을 이용한 관심 주파수영역에 대한 주파수응답 해석 및 이를 통하여 계산된 주파수응답의 여러 가지 설계변수에 대한 설계민감도 해석방법을 제안하였다. 일반적으로 구조물의 주파수응답을 고려한 최적설계를 위해서는 설계변수에 대한 관심 주파수영역에서의 주파수응답 및 그의 민감도 정보가 요구되므로, 고려하는 유한요소모델이 대형일 경우에 관심 주파수영역에서의 반복적인 해석으로 인한 계산비용의 문제가 대두된다. 본 논문에서는 축소모델을 이용하여 주파수응답과 주파수응답의 설계민감도 해석을 수행하여 계산의 효율성을 극대화하였다. 민감도 계산에는 시간측면과 구현의 용이성 측면에서 장점이 있는 준해석적 방법을 이용하였다. 수치 예제를 통하여 축소기법을 이용한 주파수응답의 설계민감도 해석 결과를 유한차분법에 근거한 민감도 결과와 비교하였다. 본 논문에서 제안된 방법을 이용하는 경우, 주파수응답을 고려한 최적설계를 계산비용 측면에서 매우 효율적으로 수행할 수 있을 것이다.
Journal of the Computational Structural Engineering Institute of Korea
/
v.21
no.3
/
pp.233-238
/
2008
In this paper, a shape design optimization method for linearly elastic problems is developed using isogeometric approach. In many design optimization problems for practical engineering models, initial raw data usually come from a CAD modeler. Then, designers should convert the CAD data into finite element mesh data since most of conventional design optimization tools are based on finite element analysis. During this conversion, there are some numerical errors due to geometric approximation, which causes accuracy problems in response as well as design sensitivity analyses. As a remedy for this phenomenon, the isogeometric analysis method can be one of the promising approaches for the shape design optimization. The main idea of isogeometric approach is that the basis functions used in analysis is exactly the same as the ones representing the geometry. This geometrically exact model can be used in the shape sensitivity analysis and design optimization as well. Therefore the shape design sensitivity with high accuracy can be obtained, which is very essential for a gradient-based optimization. Through numerical examples, it is verified that the shape design optimization based on an isogeometic approach works well.
Proceedings of the Korean Society of Disaster Information Conference
/
2022.10a
/
pp.396-397
/
2022
본 논문에서는 등기하 해석법을 이용하여 선형 탄성문제에 대한 형상 최적설계 기법을 개발하였다. 실용적인 공학문제에 대한 많은 최적설계 문제에서는 초기의 데이터가 CAD 모델로부터 주어지는 경우가 많다. 그러나 대부분의 설계 최적화 도구들은 유한요소법에 기초하고 있기 때문에 설계자는 이에 앞서 CAD 데이터를 유한요소 데이터로 변환해야 한다. 이 변환과정에서 기하 모델의 근사화에 따른 수치적 오류가 발생하게 되고, 이는 응답 해석뿐만 아니라 설계민감도 해석에 있어서도 정확도 문제를 발생시킨다. 이러한 점에서 등기하 해석법은 형상 최적설계에 있어서 유망한 방법론중 하나가 될 수 있다. 등기하 해석법의 핵심은 해석에 사용되는 기저 함수와 기하 모델을 구성하는 함수가 정확히 일치한다는 것이다. 이러한 기하학적으로 정확한 모델은 설계민감도 해석 및 형상 최적설계에 있어서도 사용된다. 이로 인해 높은 정확도의 설계민감도를 얻을 수 있으며, 이는 설계구배 기반의 최적화에 있어서 매우 중요하게 작용한다. 수치 예제를 통하여 본 논문에서 제시된 등기하 해석 기반의 형상 최적설계 방법론이 타당함을 확인하였다. 본 논문에는 등기하 해석법을 이용하여 선형 탄성문제에 대한 형상 최적설계 하였다.
Journal of the Computational Structural Engineering Institute of Korea
/
v.20
no.3
/
pp.339-345
/
2007
In this paper, a variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions for response analysis are generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Furthermore, the solution space for the response analysis can be represented in terms of the same functions to represent the geometry, which enables to provide a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling and analyze arbitrarily shaped structures without re-meshing. In this paper, a continuum-based adjoint sensitivity analysis method using the isogeometric approach is extensively derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of geometry In the isogeometric analysis, however, the geometric properties are already embedded in the B-spline basis functions and control points so that it has potential capability to overcome the aforementioned difficulties. Through some numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.
Journal of the Computational Structural Engineering Institute of Korea
/
v.14
no.2
/
pp.159-171
/
2001
평면 아치 구조물에 대해 선형 탄성 변분방정식에 기반을 둔 설계민감도 해석을 위한 일반적 이론을 개발하였다. 아치 구조물내의 임의 마디에 정의된 응력범함수를 고려하였고 이에 대한 설계민감도 공식을 유도하기 위해 전미분(material derivative) 개념과 보조(adjoint) 변수 방법을 도입하였다. 얻어진 민감도 공식은 구조해석 결과를 얻고 나면 이들로부터 단순 대수연산을 통해 계산이 되므로 적용이 간편할 뿐 아니라 해의 정확도가 높은 잇점이 있다. 본 방법은 아치의 형상을 매개변수를 통해 표현하므로 얕은 아치에 국한하지 않고 어떠한 형상도 고려가 가능하며, 나아가서 아치의 형상변화를 형상에 대해 수직뿐 아니라 접선방향도 포함하여 일반적으로 고려하므로 다양한 형상설계가 가능하다. 몇 가지 예제에서 민감도 계산을 수행함으로써 본 방법의 정확도와 효율성을 입증하였으며, 두 가지의 설계최적화 문제를 대상으로 실제로 두께 및 형상최적설계를 수행하였다.
Transactions of the Korean Society of Mechanical Engineers
/
v.17
no.6
/
pp.1478-1485
/
1993
A shape optimization problem is formulated to determine the optimal position of heating lines in a compression molding die. The objective of the problem is that the cavity surface would be maintained by a prescribed uniform temperature. A boundary integral equation for the sensitivity of the temperature in terms of hole position is derived using the method of shape design sensitivity analysis. The boundary element method is employed to analyze the temperature and sensitivity field of the die. The sensitivity calculation algorithm is incorporated in an optimization routine. To demonstrate a numerical implementation, an example problem arising in thermal design of a compression molding die is dealt with, showing that the number of heating lines chosen for the die strongly affects the ultimate uniformity of the cavity surface temperature.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.