• Title/Summary/Keyword: 최적 민감도 해석

Search Result 298, Processing Time 0.021 seconds

Formulations of Sensitivity Analyses for Topological Optimum Modelings (위상학적 최적구조 모델링을 위한 민감도해석의 공식화)

  • Lee, Dong-Kyu;Shin, Soo-Mi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.241-248
    • /
    • 2008
  • The objective of sensitivity analyses is to identify critical variables of structural models and how their variability impacts mechanical response results. The sensitivity analyses have been used as significant basis data for practical applications of measuring and reinforcing fragile building structures. This study presents several sensitivity analysis methods for topological optimum designs of linear elastostatic structural systems. Numerical examples for structural analyses and topological optimum modeling demonstrate the reliability of sensitivities formulated in the present study.

Isogeometric Shape Design Optimization of Structures Subjected to Design-dependent Loads (설계 의존형 하중 조건을 갖는 구조물의 아이소-지오메트릭 형상 최적설계)

  • Yoon, Min-Ho;Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.412-415
    • /
    • 2009
  • 본 논문에서는 등기하 해석법을 이용하여 설계 의존형 하중조건을 갖는 구조물에 대한 형상 최적설계 를 수행하였다. 유한요소 기반 형상 최적설계는 설계영역 매개화에 어려움이 있으나 등기하 해석법은 NURBS 기저 함수와 조정점을 이용함으로써 기하학적 표현이 용이하다는 장점을 가지고 있다. 기하학적으로 정확한 모델은 응답 및 설계민감도 해석에 사용되며, 설계구배 기반의 최적화에 있어서 중요한 역할을 한다. 하중조건이 설계영역의 변화에 따라 변하는 최적설계 문제에서 경계에서 설계민감도가 부정확한 경우, 설계공간에서 최적설계가 균일한 수렴성을 갖기 어렵다. 즉 유한요소법을 이용한 형상 최적설계에서 설계 의존형 하중조건을 갖는 문제를 푸는 경우, 최적설계를 진행할 때 변하는 경계의 부정확성 때문에 정확한 설계민감도를 얻기가 어려운 점이 있다. 본 논문에서는, 엄밀한 기하형상을 표현하는 등기하 설계민감도를 활용한 형상 최적설계 기법이 설계 의존형 하중조건을 갖는 문제에서 좋은 결과를 제시함을 확인하였다.

  • PDF

Reliability-based Design Optimization using MD method (곱분해기법을 적용한 신뢰성 기반 최적 설계)

  • Lee, Tae-Hee;Kim, Tae-Kyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.101-104
    • /
    • 2009
  • 최적설계는 설계자가 요구하는 제한조건을 만족시키는 범위에서 목적함수가 최소가 되는 설계점을 찾는 방법이다. 그러나 기존의 최적설계는 불확실성의 영향을 고려하지 않아 최적해가 제한조건의 경계에 위치하고 이것은 모델링과정이나 가공 등으로 인한 오차에 대한 영향을 고려하지 않는 문제점이 있다. 신뢰성 기반 최적설계는 불확실성을 정량화하면서 신뢰도를 계산하는 신뢰도 해석과정과 최적설계과정을 포함한다. 일반적으로 신뢰성 해석은 크게 추출법, 급속 확률 적분법, 모멘트 기반 신뢰성해석이 있다. 가장 널리 사용되는 급속 확률 적분법 중 최대 손상 가능점(MPP) 방법은 많은 MPP점이 존재하는 경우 수치적 비용이 증가하는 문제점과 표준 정규분포 공간으로 변환하는 과정에서 제한조건의 비선형성을 증가시켜 큰 오차를 발생시키는 문제점이 있다. 본 논문에서는 RBDO를 수행하기에 앞서 선행되어야 할 신뢰성해석 방법으로 곱분해기법을 사용하였고 이로부터 민감도 정보를 유도하여 기울기 기반 최적화 알고리즘을 적용하였다.

  • PDF

Study on Feasibility of Applying Function Approximation Moment Method to Achieve Reliability-Based Design Optimization (함수근사모멘트방법의 신뢰도 기반 최적설계에 적용 타당성에 대한 연구)

  • Huh, Jae-Sung;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.163-168
    • /
    • 2011
  • Robust optimization or reliability-based design optimization are some of the methodologies that are employed to take into account the uncertainties of a system at the design stage. For applying such methodologies to solve industrial problems, accurate and efficient methods for estimating statistical moments and failure probability are required, and further, the results of sensitivity analysis, which is needed for searching direction during the optimization process, should also be accurate. The aim of this study is to employ the function approximation moment method into the sensitivity analysis formulation, which is expressed as an integral form, to verify the accuracy of the sensitivity results, and to solve a typical problem of reliability-based design optimization. These results are compared with those of other moment methods, and the feasibility of the function approximation moment method is verified. The sensitivity analysis formula with integral form is the efficient formulation for evaluating sensitivity because any additional function calculation is not needed provided the failure probability or statistical moments are calculated.

Design Sensitivity Analysis of Frequency Response Using Krylov Subspace Based Model Reduction (Krylov 부공간 축소기법을 이용한 주파수응답의 설계민감도 해석)

  • Han, Jeong-Sam
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.131-134
    • /
    • 2009
  • Krylov 부공간 모델차수축소법은 초기 유한요소모델과 축소모델의 전달함수의 계수인 모멘트를 일치시키는 방법을 이용하는 축소기법으로 이미 대형 유한요소모델의 주파수응답 해석의 효율적인 계산에 많이 사용되고 있는 방법 중의 하나이다. 본 논문에서는 Krylov 부공간 축소기법을 이용한 관심 주파수영역에 대한 주파수응답 해석 및 이를 통하여 계산된 주파수응답의 여러 가지 설계변수에 대한 설계민감도 해석방법을 제안하였다. 일반적으로 구조물의 주파수응답을 고려한 최적설계를 위해서는 설계변수에 대한 관심 주파수영역에서의 주파수응답 및 그의 민감도 정보가 요구되므로, 고려하는 유한요소모델이 대형일 경우에 관심 주파수영역에서의 반복적인 해석으로 인한 계산비용의 문제가 대두된다. 본 논문에서는 축소모델을 이용하여 주파수응답과 주파수응답의 설계민감도 해석을 수행하여 계산의 효율성을 극대화하였다. 민감도 계산에는 시간측면과 구현의 용이성 측면에서 장점이 있는 준해석적 방법을 이용하였다. 수치 예제를 통하여 축소기법을 이용한 주파수응답의 설계민감도 해석 결과를 유한차분법에 근거한 민감도 결과와 비교하였다. 본 논문에서 제안된 방법을 이용하는 경우, 주파수응답을 고려한 최적설계를 계산비용 측면에서 매우 효율적으로 수행할 수 있을 것이다.

  • PDF

Shape Design Optimization Using Isogeometric Analysis (등기하 해석법을 이용한 형상 최적설계)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.233-238
    • /
    • 2008
  • In this paper, a shape design optimization method for linearly elastic problems is developed using isogeometric approach. In many design optimization problems for practical engineering models, initial raw data usually come from a CAD modeler. Then, designers should convert the CAD data into finite element mesh data since most of conventional design optimization tools are based on finite element analysis. During this conversion, there are some numerical errors due to geometric approximation, which causes accuracy problems in response as well as design sensitivity analyses. As a remedy for this phenomenon, the isogeometric analysis method can be one of the promising approaches for the shape design optimization. The main idea of isogeometric approach is that the basis functions used in analysis is exactly the same as the ones representing the geometry. This geometrically exact model can be used in the shape sensitivity analysis and design optimization as well. Therefore the shape design sensitivity with high accuracy can be obtained, which is very essential for a gradient-based optimization. Through numerical examples, it is verified that the shape design optimization based on an isogeometic approach works well.

A Study on User Recognition by Sending Emergency Disaster Text Messages (긴급재난문자 발송에 따른 이용자 인식에 관한 연구)

  • Kim, Hee_Jae;Pyo, Kyong-Soo;Park, Keun Oh
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.396-397
    • /
    • 2022
  • 본 논문에서는 등기하 해석법을 이용하여 선형 탄성문제에 대한 형상 최적설계 기법을 개발하였다. 실용적인 공학문제에 대한 많은 최적설계 문제에서는 초기의 데이터가 CAD 모델로부터 주어지는 경우가 많다. 그러나 대부분의 설계 최적화 도구들은 유한요소법에 기초하고 있기 때문에 설계자는 이에 앞서 CAD 데이터를 유한요소 데이터로 변환해야 한다. 이 변환과정에서 기하 모델의 근사화에 따른 수치적 오류가 발생하게 되고, 이는 응답 해석뿐만 아니라 설계민감도 해석에 있어서도 정확도 문제를 발생시킨다. 이러한 점에서 등기하 해석법은 형상 최적설계에 있어서 유망한 방법론중 하나가 될 수 있다. 등기하 해석법의 핵심은 해석에 사용되는 기저 함수와 기하 모델을 구성하는 함수가 정확히 일치한다는 것이다. 이러한 기하학적으로 정확한 모델은 설계민감도 해석 및 형상 최적설계에 있어서도 사용된다. 이로 인해 높은 정확도의 설계민감도를 얻을 수 있으며, 이는 설계구배 기반의 최적화에 있어서 매우 중요하게 작용한다. 수치 예제를 통하여 본 논문에서 제시된 등기하 해석 기반의 형상 최적설계 방법론이 타당함을 확인하였다. 본 논문에는 등기하 해석법을 이용하여 선형 탄성문제에 대한 형상 최적설계 하였다.

  • PDF

Shape Design Sensitivity Analysis Using Isogeometric Approach (등기하 해석법을 이용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.339-345
    • /
    • 2007
  • In this paper, a variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions for response analysis are generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Furthermore, the solution space for the response analysis can be represented in terms of the same functions to represent the geometry, which enables to provide a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling and analyze arbitrarily shaped structures without re-meshing. In this paper, a continuum-based adjoint sensitivity analysis method using the isogeometric approach is extensively derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of geometry In the isogeometric analysis, however, the geometric properties are already embedded in the B-spline basis functions and control points so that it has potential capability to overcome the aforementioned difficulties. Through some numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

Design Sensitivity Analysis and Optimization of Plane Arch Structures Using Variational Formulation (변분공식화를 이용한 2차원 아치 구조물의 설계민감도 해석 및 최적설계)

  • 최주호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.2
    • /
    • pp.159-171
    • /
    • 2001
  • 평면 아치 구조물에 대해 선형 탄성 변분방정식에 기반을 둔 설계민감도 해석을 위한 일반적 이론을 개발하였다. 아치 구조물내의 임의 마디에 정의된 응력범함수를 고려하였고 이에 대한 설계민감도 공식을 유도하기 위해 전미분(material derivative) 개념과 보조(adjoint) 변수 방법을 도입하였다. 얻어진 민감도 공식은 구조해석 결과를 얻고 나면 이들로부터 단순 대수연산을 통해 계산이 되므로 적용이 간편할 뿐 아니라 해의 정확도가 높은 잇점이 있다. 본 방법은 아치의 형상을 매개변수를 통해 표현하므로 얕은 아치에 국한하지 않고 어떠한 형상도 고려가 가능하며, 나아가서 아치의 형상변화를 형상에 대해 수직뿐 아니라 접선방향도 포함하여 일반적으로 고려하므로 다양한 형상설계가 가능하다. 몇 가지 예제에서 민감도 계산을 수행함으로써 본 방법의 정확도와 효율성을 입증하였으며, 두 가지의 설계최적화 문제를 대상으로 실제로 두께 및 형상최적설계를 수행하였다.

  • PDF

Optimal Positioning of Heating Lines in a Compression Molding Die Using the Boundary Element Method (경계요소법을 이용한 압축성형다이 가열선의 최적위치 설계)

  • 이부윤;조종래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1478-1485
    • /
    • 1993
  • A shape optimization problem is formulated to determine the optimal position of heating lines in a compression molding die. The objective of the problem is that the cavity surface would be maintained by a prescribed uniform temperature. A boundary integral equation for the sensitivity of the temperature in terms of hole position is derived using the method of shape design sensitivity analysis. The boundary element method is employed to analyze the temperature and sensitivity field of the die. The sensitivity calculation algorithm is incorporated in an optimization routine. To demonstrate a numerical implementation, an example problem arising in thermal design of a compression molding die is dealt with, showing that the number of heating lines chosen for the die strongly affects the ultimate uniformity of the cavity surface temperature.