• Title/Summary/Keyword: 최적제어 설계

Search Result 1,178, Processing Time 0.023 seconds

Optimal Design Of Multisite Batch-Storage Network under Scenario Based Demand Uncertainty (다수의 공장을 포함하는 불확실한 수요예측하의 회분식 공정-저장조 망의 최적설계)

  • 이경범;이의수;이인범
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.537-544
    • /
    • 2004
  • An effective methodology is reported for determining the optimal lot size of batch processing and storage networks which include uncertain demand forecasting. We assume that any given storage unit can store one material type which can be purchased from suppliers, internally produced, infernally consumed, transported to or from other sites and/or sold to customers. We further assume that a storage unit is connected to all processing and transportation stages that consume/produce or move the material to which that storage unit is dedicated. Each processing stage transforms a set of feedstock materials or intermediates into a set of products with constant conversion factors. A batch transportation process can transfer one material or multiple materials at once between sites. The objective for optimization is to minimize the probability averaged total cost composed of raw material procurement, processing setup, transportation setup and inventory holding costs as well as the capital costs of processing stages and storage units. A novel production and inventory analysis formulation, the PSW(Periodic Square Wave) model, provides useful expressions for the upper/lower bounds and average level of the storage inventory. The expressions for the Kuhn-Tucker conditions of the optimization problem can be reduced to two sub-problems. The first yields analytical solutions for determining lot sires while the second is a separable concave minimization network flow subproblem whose solution yields the average material flow rates through the networks for the given demand forecast scenario. The result of this study will contribute to the optimal design and operation of the global supply chain.

Experiment and Evaluation of Mist Diffusion from Water Tube for Blasting Dust Control in accordance with the Explosives Position (폭약 기폭위치에 따른 발파 분진제어용 워터튜브 주입수의 분무확산 실험 및 평가)

  • Yang, Hyung-Sik;Ko, Young-Hun;Kim, Jung-Gyu;Noh, You-Song;Park, Hoon;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.46-55
    • /
    • 2015
  • A water tube with detonating cord was devised to control the blast dust. Water diffusion experiments with different detonating cord positions were conducted during the series of experiments to optimize the design parameters of the tube. Images from high speed camera were analyzed to evaluate the results. AUTODYN program was adopted to simulate the diffusion process of water and compared with the images. Diffusion of water shows cross flow in case of external charge while the internal case shows radial flow. A bubble ring was formed during the numerical analysis of internal charge case as occurred in underwater blast. An additional bubble ring was formed by the reflection pressure from the ground. And the Weber number was determined as sufficient for spray atomization performance of the water tube.

Speed Characteristics of The Thin Cross Ultrasonic Motor (Thin Cross 초음파모터의 속도특성)

  • Jeong, Seong-Su;Jun, Ho-Ik;Chong, Hyon-Ho;Park, Min-Ho;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.51-51
    • /
    • 2009
  • Thin Cross 초음파모터의 구조는 그림 1(a)와 같이 크로스형태의 얇은 스테이터에 윗면과 아랫면에 각각 8개의 압전세라믹이 부착된 형태이다. 압전세라믹의 분극방향은 로터와 접촉하는 스테이터의 중심부인 네 개의 타 점에서 순차적인 타원변위가 생성되도록 결정된다. 유한요소해석프로그램인 ATILA 5.2.4를 사용하여 최적설계된 모델을 제작하였고, 푸쉬풀 게이지, x-y 스테이지, rpm 메타, 토크 게이지를 이용하여 구동시스템을 구성하였다. 그림 1(b)는 마이크로컨트롤러(ATmega)를 이용한 구동 드라이버를 보여준다. 한 주기에서 1/4분주의 순차적인 네 개 의 구형파를 생성하고, 이를 push-pull회로를 통하여 90도의 위상차가 나는 정현파를 생성하여 초음파 모터의 구동 전원으로 사용한다. 피드백 회로인 맨코더와 AD 컨버터는 정속도 운전을 위해서 사용되었다. 제안된 구동드라이버를 이용하여 측정한 결과, 기존의 제품화된 드라이버와 비교하여도 특성의 큰 차이를 보이지 않았으며 피드백 회로를 통하여 부하변화에 따른 속도의 극심한 변화를 비교적 안정화 시킬 수 있었다. 입력전압을 증가시킬수록 속도는 선형적인 증가를 보였고 토크는 이와 반대로 감소하는 특성을 보였다. 피드백 제어회로가 없는 경우에는 프리로드 변화에 따른 극심한 속도 변화를 보였고, 피드백 제어를 하였을 경우에는 0.2~0.4[N]의 범위에서 정속도 운전이 가능함을 확인하였으며, 장시간의 운전에도 온도 및 속도특성이 안정적인 특성을 보였다.

  • PDF

Model Validation of a Fast Ethernet Controller for Performance Evaluation of Network Processors (네트워크 프로세서의 성능 예측을 위한 고속 이더넷 제어기의 상위 레벨 모델 검증)

  • Lee Myeong-jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.1
    • /
    • pp.92-99
    • /
    • 2005
  • In this paper, we present a high-level design methodology applied on a network system-on-a-chip(SOC) using SystemC. The main target of our approach is to get optimum performance parameters for high network address translation(NAT) throughput. The Fast Ethernet media access controller(MAC) and its direct memory access(DMA) controller are modeled with SystemC in transaction level. They are calibrated through the cycle-based measurement of the operation of the real Verilog register transfer language(RTL). The NAT throughput of the model is within $\pm$10% error compared to the output of the real evaluation board. Simulation speed of the model is more than 100 times laster than the RTL. The validated models are used for intensive architecture exploration to find the performance bottleneck in the NAT router.

Optimal Design of a Novel Knee Orthosis using a Genetic Algorism (유전자 알고리즘을 이용한 새로운 무릎 보장구의 최적 설계)

  • Pyo, Sang-Hun;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1021-1028
    • /
    • 2011
  • The objective of this paper is to optimize the design parameters of a novel mechanism for a robotic knee orthosis. The feature of the proposed knee othosis is to drive a knee joint with independent actuation during swing and stance phases, which can allow an actuator with fast rotation to control swing motions and an actuator with high torque to control stance motions, respectively. The quadriceps device operates in five-bar links with 2-DOF motions during swing phase and is changed to six-bar links during stance phase by the contact motion to the patella device. The hamstring device operates in a slider-crank mechanism for entire gait cycle. The suggested kinematic model will allow a robotic knee orthosis to use compact and light actuators with full support during walking. However, the proposed orthosis must use additional linkages than a simple four-bar mechanism. To maximize the benefit of reducing the actuators power by using the developed kinematic design, it is necessary to minimize total weight of the device, while keeping necessary actuator performances of torques and angular velocities for support. In this paper, we use a SGA (Simple Genetic Algorithm) to minimize sum of total link lengths and motor power by reducing the weight of the novel knee orthosis. To find feasible parameters, kinematic constraints of the hamstring and quadriceps mechanisms have been applied to the algorithm. The proposed optimization scheme could reduce sum of total link lengths to half of the initial value. The proposed optimization scheme can be applied to reduce total weight of general multi-linkages while keeping necessary actuator specifications.

Optimal Design of Process-Inventory Network under Cycle Time and Batch Quantity Uncertainties (이중 불확실성하의 공정-저장조 망구조 최적설계)

  • Suh, Kuen-Hack;Yi, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.305-312
    • /
    • 2010
  • The aim of this study is to find an analytic solution to the problem of determining the optimal capacity of a batch-storage network to meet demand for finished products in a system undergoing joint random variations of operating time and batch material loss. The superstructure of the plant considered here consists of a network of serially and/or parallel interlinked batch processes and storage units. The production processes transform a set of feedstock materials into another set of products with constant conversion factors. The final product demand flow is susceptible to joint random variations in the cycle time and batch size. The production processes have also joint random variations in cycle time and product quantity. The spoiled materials are treated through regeneration or waste disposal processes. The objective function of the optimization is minimizing the total cost, which is composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units. A novel production and inventory analysis the PSW (Periodic Square Wave) model, provides a judicious graphical method to find the upper and lower bounds of random flows. The advantage of this model is that it provides a set of simple analytic solutions while also maintaining a realistic description of the random material flows between processes and storage units; as a consequence of these analytic solutions, the computation burden is significantly reduced. The proposed method has the potential to rapidly provide very useful data on which to base investment decisions during the early plant design stage. It should be of particular use when these decisions must be made in a highly uncertain business environment.

Development and Evaluation of 3-Axis Gyro Sensor based Servo motion control (3-Axis Gyro Sensor based on Servo Motion Control 장치의 성능평가기준 및 시험규격개발)

  • Lee, WonBu;Chang, Chulsoon;Kim, JeongKuk;Park, Soohong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.627-630
    • /
    • 2009
  • The combination of the marine use various multi sensor surveillance system technology with the development of servo motion control algorithm and gyro sensor in six freedom motion is implemented to analyze the movement response. The stabilization of the motion control is developed and Nano driving Precision Pan-Tilt/Gimbal system is obtained from the security positioning cameras with ultra high speed device is used to carry out the exact behavior of the device. The exact behavior will be used to make a essential equipment. Finally the development of the Nano Driving Multi Sensor, Nano of Surveillance System Driving Precision Pan-Tilt/Gimbal optimal design and production, 3-aix Gyro Sensor based with Servo Motion Control algorithm development, Image trace video software and hardware tracking the development is organized and discuss in details. The development of the equipment and the system integration are fully experimented and verified.

  • PDF

A Development and Performance Experiment on In-rack Sprinkler Head for Rack Type Warehouse (적층식 대형창고 스프링클러헤드 개발 및 성능실험)

  • Kim, Woon-Hyung;Lee, Jun;Hong, Seong-Ho;Kim, Jong-Hoon;Yang, So-Jin
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.214-222
    • /
    • 2019
  • Purpose: The purpose of this study is to develop a sprinkler head that can be controlled and initial suppressed by installing it in a rack-type warehouse. Method: Considering the spray radius and spray pattern, various deflectors were designed, and the spray angle, discharge characteristics and protection performance test was conducted, and these results were compared and analyzed. Results: An optimal sprinkler head was developed to protect full load, front side of a commodity with minimum water volume 115L/min. Conclusion: The developed head of K-115 and 1Bar pressure was tested with one tier storage confirming that the fire control is carried out without burning all the loadings. In addition, the vertical distance from the top of the load to the deflector shall be separated by 450mm and installed to allow sufficient discharge to the outer part of the commodity.

Shape Optimization of Three-Way Reversing Valve for Cavitation Reduction (3 방향 절환밸브의 공동현상 저감을 위한 형상최적화)

  • Lee, Myeong Gon;Lim, Cha Suk;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1123-1129
    • /
    • 2015
  • A pair of two-way valves typically is used in automotive washing machines, where the water flow direction is frequently reversed and highly pressurized clean water is sprayed to remove the oil and dirt remaining on machined engine and transmission blocks. Although this valve system has been widely used because of its competitive price, its application is sometimes restricted by surging effects, such as pressure ripples occurring in rapid changes in water flow caused by inaccurate valve control. As an alternative, one three-way reversing valve can replace the valve system because it provides rapid and accurate changes to the water flow direction without any precise control device. However, a cavitation effect occurs because of the complicated bottom plug shape of the valve. In this study, the cavitation index and percent of cavitation (POC) were introduced to numerically evaluate fluid flows via computational fluid dynamics (CFD) analysis. To reduce the cavitation effect generated by the bottom plug, the optimal shape design was carried out through a parametric study, in which a simple computer-aided engineering (CAE) model was applied to avoid time-consuming CFD analysis and difficulties in achieving convergence. The optimal shape design process using full factorial design of experiments (DOEs) and an artificial neural network meta-model yielded the optimal waist and tail length of the bottom plug with a POC value of less than 30%, which meets the requirement of no cavitation occurrence. The optimal waist length, tail length and POC value were found to 6.42 mm, 6.96 mm and 27%, respectively.

NRZ versus RZ Modulation Format in Lumped Dispersion Managed Systems (집중형 분산 제어 시스템에서 NRZ 변조 형식 대 RZ 변조 형식)

  • Lee, Seong-Real;Cho, Sung-Eon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.328-335
    • /
    • 2008
  • The system performance of NRZ format in WDM transmission system with lumped dispersion management(DM) and optical phase conjugator(OPC) is compared with that of RZ format. It is confirmed that eye opening penalty(EOP) of both NRZ and RZ format in WDM transmission system having lumped DM combined with OPC are greatly improved than those in WDM system with only OPC. The optimal net residual dispersion(NRD) in the case of RZ format is decided to so small value that path-averaged dispersion coefficient become almost zero, while that in the case of NRZ format is decided to larger value, for the best improvement of overall WDM channels. It is also confirmed that EOP in the case of RZ format is more improved than that in the case of NRZ format in lumped DM with optimal NRD. This is resulted from that lumped DM combined with OPC suppress the signal distortion due to intrachannel four-wave mixing(IFWM) and intrachannel cross phase modulation(IXPM). Consequently, lumped DM combined with OPC proposed in this paper is effective technique to mitigate intrachannel nonlinearities in WDM transmitting RZ format.