• 제목/요약/키워드: 최적설계 전산모델

검색결과 141건 처리시간 0.021초

Optimization of the Integrated Seat for Crashworthiness Improvement (일체형 시트의 충돌특성 개선을 위한 최적설계)

  • 이광기;이광순;박현민;최동훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제16권4호
    • /
    • pp.345-351
    • /
    • 2003
  • Due to increasing legal and market demands for safety in the automotive design process, the design of integrated seat is important more and mote because it should satisfy the conflict between stronger and lower weight for safety and environmental demands. In this study for crash simulations, the numerical simulations have been carried out using the explicit finite element program LS-Dyna according to the FMVSS 210 standard for safety test of seat. Since crash simulations are very time-consuming and a series of simulations that does not lead to a better result is very costly, the optimization method must be both efficient and reliable. As a result of that, statistical approaches such as design of experiments and response surface model have been successfully implemented to reduce time-consuming LS-Dyna simulations and optimize the safety and environmental demands together with nonlinear optimization algorithm. Design of experiments is used lot exploring the design space of maximum displacement and total weight and for building response surface models in order to minimize the maximum displacement and total weight of integrated seat.

Selection of Sectional Dimensions and Outrigger Locations of Outrigger Structure Based on Optimum Design Using G.A (GA를 이용한 최적설계 기반 아웃리거 시스템 구조물의 부재 단면 및 아웃리거 위치 선정)

  • Lee, Eun-Seok;Choi, Se-Woon;Park, Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.702-705
    • /
    • 2011
  • 본 논문에서는 초고층 전단벽-아웃리거 시스템에 대해, 기존의 근사해석법과 유전알고리즘을 이용하여, 물량최적설계 기반의 구성요소 단면 및 아웃리거 최적위치 결정에 관해 연구를 진행하였다. 아웃리거 시스템의 최적성은 아웃리거의 위치와 아웃리거 시스템을 구성하는 전단벽-아웃리거, 외곽기둥의 단면 성능의 복잡한 관계에 의해 역학적으로 결정된다. 하지만 기존의 아웃리거 시스템의 최적화 연구는 대부분 전단벽과 아웃리거, 외곽기둥의 단면은 고정된 상태에서, 아웃리거의 위치만 설계변수로 하여 아웃리거의 최적위치를 찾는 연구에 국한되어 있다. 이에 본 연구에서는 G.A.를 이용하여, 아웃리거 설치위치뿐만 아니라 전단벽과 아웃리거, 외곽기둥의 단면까지 설계변수로 하여 물량최적설계 조건을 만족시키는 아웃리거시스템의 최적설계 연구를 진행하였다. 또한 반복 계산의 시간을 줄이기 위해 기존의 근사해석법을 사용하였다. 본 연구의 결과는 초고층 구조물의 초기 설계 시에 구성요소의 단면 및 아웃리거 설치 층의 선정에 적극 활용될 수 있을 것이다.

  • PDF

Design Optimization of a RC Building Structure using an Approximate Optimization Technique (근사최적화 기법을 이용한 RC 빌딩의 구조 최적설계)

  • Park, Chang-Hyun;Ahn, Hee-Jae;Choi, Dong-Hoon;Jung, Cheul-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제24권2호
    • /
    • pp.223-233
    • /
    • 2011
  • A design optimization problem was formulated to minimize the volume of an RC building structure while satisfying design constraints on structural displacements under vertical, wind and seismic loads. We employed metamodel-based design optimization using design of experiments, metamodeling and optimization algorithm to circumvent the difficulty of the automation of structural analysis procedure. Especially, we proposed a design approach of repetitive design optimizations by stages with changing the side constraint values on design variables and limit values on design constraints until a satisfactory design result was obtained. Using the proposed design approach, the volume of the RC building structure has been reduced by 53.3 % compared to the initial one while satisfying all the design constraints. This design result clearly shows the validity of the proposed design approach.

Isogeometric Shape Design Optimization of Structures Subjected to Design-dependent Loads (설계 의존형 하중 조건을 갖는 구조물의 아이소-지오메트릭 형상 최적설계)

  • Yoon, Min-Ho;Koo, Bon-Yong;Ha, Seung-Hyun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제24권1호
    • /
    • pp.1-7
    • /
    • 2011
  • In this paper, based on an isogeometric approach, we have developed a shape design optimization method for plane elasticity problems subjected to design-dependent loads. The conventional shape optimization using the finite element method has some difficulties in the parameterization of geometry. In an isogeometric analysis, however, the geometric properties are already embedded in the B-spline basis functions and control points so that it has potential capability to overcome the aforementioned difficulties. The solution space for the response analysis can be represented in terms of the same NURBS basis functions to represent the geometry, which yields a precise analysis model that exactly represents the normal and curvature depending on the applied loads. A continuum-based isogeometric adjoint sensitivity is extensively derived for the plane elasticity problems under the design-dependent loads. Through some numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

Optimum Design of Automobile Seat Upper Arm Using Finite Elements (유한요소를 이용한 자동차 시트 어퍼암의 최적설계)

  • 임오강;이진식;노효철;최정묵
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제14권2호
    • /
    • pp.135-141
    • /
    • 2001
  • 차량 충돌시 자동차의 시트는 승객 및 운전자를 보호해야 한다. 따라서 자동차시트는 충분한 강도를 가져야 하며 이것은 여러 가지 법규에 의해서 제재되고 있다. 물리적 실험 결과가 법규에 정한 규정치를 만족시키기 위해 과대설계 될 수 있다. 그러나 이것은 연비를 줄이기 위한 경량화의 만족이라는 설계요구에 상충한다. 본 논문에서는 헤드레스트 강도시험을 시뮬레이션하고 과대 설계되어 있다고 판단되는 어퍼암을 최적화 모델로 최적설계를 수행하였다. 순차 이차 계획법인 PLBA 알고리즘과 민감도 해석을 위하여 직접근사해석법을 사용하였다.

  • PDF

Development of Computational Orthogonal Array based Fatigue Life Prediction Model for Shape Optimization of Turbine Blade (터빈 블레이드 형상 최적설계를 위한 전산 직교배열 기반 피로수명 예측 모델 개발)

  • Lee, Kwang-Ki;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제34권5호
    • /
    • pp.611-617
    • /
    • 2010
  • A complex system involves a large number of design variables, and its operation is non-linear. To explore the characteristics in its design space, a Kriging meta-model can be utilized; this model has replaced expensive computational analysis that was performed in traditional parametric design optimization. In this study, a Kriging meta-model with a computational orthogonal array for the design of experiments was developed to optimize the fatigue life of a turbine blade whose behavior under cyclic rotational loads is significantly non-linear. The results not only show that the maximum fatigue life is improved but also indicate that the accuracy of computational analysis is achieved. In addition, the robustness of the results obtained by six-sigma optimization can be verified by comparison with the results obtained by performing Monte Carlo simulations.

Shape Design Sensitivity Analysis Using Isogeometric Approach (등기하 해석법을 이용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제20권3호
    • /
    • pp.339-345
    • /
    • 2007
  • In this paper, a variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions for response analysis are generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Furthermore, the solution space for the response analysis can be represented in terms of the same functions to represent the geometry, which enables to provide a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling and analyze arbitrarily shaped structures without re-meshing. In this paper, a continuum-based adjoint sensitivity analysis method using the isogeometric approach is extensively derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of geometry In the isogeometric analysis, however, the geometric properties are already embedded in the B-spline basis functions and control points so that it has potential capability to overcome the aforementioned difficulties. Through some numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

Direct Design Sensitivity Analysis of Frequency Response Function Using Krylov Subspace Based Model Order Reduction (Krylov 부공간 모델차수축소법을 이용한 주파수응답함수의 직접 설계민감도 해석)

  • Han, Jeong-Sam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제23권2호
    • /
    • pp.153-163
    • /
    • 2010
  • In this paper a frequency response analysis using Krylov subspace-based model reduction and its design sensitivity analysis with respect to design variables are presented. Since the frequency response and its design sensitivity information are necessary for a gradient-based optimization, problems of high computational cost and resource may occur in the case that frequency response of a large sized finite element model is involved in the optimization iterations. In the suggested method model order reduction of finite element models are used to calculate both frequency response and frequency response sensitivity, therefore one can maximize the speed of numerical computation for the frequency response and its design sensitivity. As numerical examples, a semi-monocoque shell and an array-type $4{\times}4$ MEMS resonator are adopted to show the accuracy and efficiency of the suggested approach in calculating the FRF and its design sensitivity. The frequency response sensitivity through the model reduction shows a great time reduction in numerical computation and a good agreement with that from the initial full finite element model.

Infrared Reflector Design using the Phase Field Method for Infrared Stealth Effect (적외선 피탐지를 위한 페이즈 필드법 기반의 적외선 반사층 설계)

  • Heo, Namjoon;Yoo, Jeonghoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제28권1호
    • /
    • pp.63-69
    • /
    • 2015
  • In this paper, infrared reflector design targeting infrared stealth effect is presented using structural optimization based on the phase field method. The analysis model was determined to accomplish the design that an incident infrared wave was reflected to a desired direction. The design process was to maximize the objective value at the measuring domain located in a target region and the design objective was set to the Poynting vector value which represents the energy flux. Optimization results were obtained according to the variation of some parameter values related to the phase field method. The model with a maximum objective value was selected as the final optimal model. The optimal model was modified to eliminate the gray scale using the cut-off method and it confirmed improved performance. In addition, to check the desired effect in the middle wave infrared range(MWIR), the analysis was performed by changing the input wavelength. The finite element analysis and optimization process were performed by using the commercial package COMSOL combined with the Matlab programming.