• 제목/요약/키워드: 최소제곱오차 추정

검색결과 73건 처리시간 0.032초

복합패널 데이터에 기초한 최소제곱 패널회귀추정량의 설계기반 성질 (Design-Based Properties of Least Square Estimators of Panel Regression Coefficients Based on Complex Panel Data)

  • 김규성
    • Communications for Statistical Applications and Methods
    • /
    • 제17권4호
    • /
    • pp.515-525
    • /
    • 2010
  • 본 논문에서는 패널회귀모형에서 회귀계수의 일반최소제곱추정량과 가중최소제곱추정량의 설계기반 성질을 살펴보았다. 복합표본이 주어진 경우에 두 추정량의 설계편향을 구하여 가중최소제곱추정량의 설계편향의 크기가 더 작음을 보였다. 또한 한국복지패널 데이터를 대상으로 모의실험을 실시하여 다음의 결과를 얻었다. 첫째, 일반최소제곱추정치의 상대편향이 가중최소제곱추정치의 상대편향보다 약 2배 정도 크게 나타났고 일반최소제곱추정치의 편향비가 더 크게 나타났다. 그리고 표본수가 증가하면 일반최소제곱 추정치의 상대편향은 완만하게 줄어든 반면 가중최소제곱추정치의 상대편향은 급속도로 줄어들었다. 둘째, 표본수가 증가하면 일반초소제곱추정치와 가중최소제곱추정치의 분산과 평균제곱오차는 모두 줄어들였다. 그러나 평균제곱오차에서 차지하는 편향제곱의 비율은 표본수가 증가할 때 일반최소제곱추정치에서는 증가하는 반면 가중최소제곱추정치에서는 감소하는 경향이 나타났다. 마지막으로 거의 모든 경우에 일반최소제곱추정치의 분산이 가중최소제곱추정치의 분산보다 작게 나타났다. 그리고 많은 경우에 일반최소제곱추정치의 평균제곱오차가 가중최소제곱추정치의 평균제곱오차보다 작게 나타났다. 그러나 표본수가 증가할수록 일반최소제곱추정치의 평균제곱오차가 가중최소제곱추정치의 평균제곱오차보다 커지는 경우가 늘어났다.

패널회귀모형에서 회귀계수 추정량의 설계기반 성질 (Design-based Properties of Least Square Estimators in Panel Regression Model)

  • 김규성
    • 한국조사연구학회지:조사연구
    • /
    • 제12권3호
    • /
    • pp.49-62
    • /
    • 2011
  • 본 논문에서는 패널회귀모형에서 회귀계수 추정량으로 일반최소제곱추정량과 가중최소 제곱추정량의 설계기반 성질을 고찰한다. 회귀계수의 최소제곱추정량을 선형화하여 일반최소제곱추정량의 근사편향, 근사분산, 그리고 근사평균제곱오차의 수식과, 가중최소제곱추정량의 근사분산 수식을 유도한 후, 모의실험을 통하여 두 추정량의 근사분산 및 근사평균 제곱오차의 크기를 수치적으로 비교한다. 모의실험에서는 한국복지패널 3개년 데이터를 모집단으로 간주하고, 가구소득 변수를 관심변수로 하며 가구와 가구주 관련 7개 변수를 설명변수로 하는 유한모집단 회귀계수를 고려한다. 두 추정량의 설계기반 성질을 비교하기 위하여 표본수를 50에서 1,000까지 50 간격으로 설정하여 일반최소제곱추정량의 근사편향, 근사분산 그리고 가중최소제곱추정량의 근사분산을 계산한다. 모의실험을 통하여 다음과 같은 경향을 확인하였다. 첫째, 표본의 크기가 커지면 일반최소제곱추정량의 평균제곱오차가 가중최소제곱추정량의 분산보다 커진다. 둘째, 일반최소제곱추정량의 평균제곱오차를 가중최소제곱추정량의 분산으로 나눈비(ratio)는 설명변수에 따라 크기가 다르게 나타나고, 일반최소제곱추정량의 편향이 클수록 큰 값을 보인다. 셋째, 분산만 비교하면 일반최소제곱추정량의 분산이 가중최소제곱추정량의 분산보다 대부분의 경우에 더 작게 나타난다.

  • PDF

다중경로 상황에서의 전파 인자 기반 고각 추정 알고리즘 선택기법 (Propagation Factor Based Elevation Estimation Algorithm Selection Method in Multipath Situation)

  • 권대현
    • 한국항행학회논문지
    • /
    • 제28권2호
    • /
    • pp.172-177
    • /
    • 2024
  • 본 논문은 레이다로 다중경로 상황에서 고각 추정을 할 때 고각 추정 오차가 커지는 문제를 극복하기 위한 방법을 제시하였다. 다중경로 상황 이란, 동일한 표적에서 반사된 레이다의 수신신호가 여러경로에서 오는 것을 의미한다. 다중경로 상황이 아닐 때는 모노펄스 방식이 정확하고, 그 반대 상황이면 최소 제곱 오차 추정 방식이 정확하다. 다중경로 상황이면서 고각이 매우 낮을 경우, 최소 제곱 오차 추정이 발산하는 특이 경우가 발생한다. 이 특이경우를 전파 인자 기반으로 판별하여, 모노펄스와 최소 제곱 오차 추정 방식을 선택적으로 운용했다. 그 결과, 고각 추정의 정확도를 높이는 데 성공했다. 본 논문에서 제안한 방법을 검증하기 위하여 매트랩 시뮬레이션을 수행했다.

최소카이제곱추정과 붓스트랩 (Minimum Chi-square estimation and the bootstrap)

  • 정한영;이기원;구자용
    • 응용통계연구
    • /
    • 제7권2호
    • /
    • pp.269-277
    • /
    • 1994
  • 최소카이제곱추정에 의하여 구한 추정량의 표본분포를 붓스트랩으로 근사시켰을 때에도 정규근사와 최소한 동등함을 설명하고, 이 이론을 자궁경부암 조직에서 검출되는 란게르한스 세포의 출현률 추정에 이용하였다. 란게르한스 세포의 출현횟수를 포지티브 포아송 모형에 적합시켰으며, 추정된 출현률의 표준오차는 대표본 근사 및 붓스트랩을 이용하여 계산하였다. 두 방법 모두 비슷한 결과를 제공하였다.

  • PDF

포함확률비례추출에서 회귀계수 최소제곱추정량의 근사분산 (Approximate Variance of Least Square Estimators for Regression Coefficient under Inclusion Probability Proportional to Size Sampling)

  • 김규성
    • Communications for Statistical Applications and Methods
    • /
    • 제19권1호
    • /
    • pp.23-32
    • /
    • 2012
  • 본 논문은 유한모집단에서 회귀계수추정량의 근사편향과 근사분산을 다루고 있다. 유한모집단에서 고정크기 포함확률비례표본을 추출하고 이 표본에서 조사된 데이터에 기초하여 회귀계수를 일반최소제곱추정량과 가중최소제곱추정량으로 추정할 때 두 추정량의 편향, 분산 그리고 평균제곱오차의 근사식을 유도하였다. 그리고 두 추정량의 효율을 비교하기 위하여 두 추정량의 분산을 비교하는 필요충분조건을 제시하였다. 또한 수치적인 비교를 위하여 간단한 예제를 소개하였다.

지수혼합 시계열 모형의 추정 (Estimation for the Exponential ARMA Model)

  • Won Kyung Kim;In Kyu Kim
    • 응용통계연구
    • /
    • 제7권2호
    • /
    • pp.239-248
    • /
    • 1994
  • 지수혼합 시계열 모형인 EARMA(1,1) 모형이 율-워커 추정법과 조건최소제곱 추정법으로 추정되었다. 율-워커 추정량은 이동평균모수가 포함된 ERAMA(1,1) 모형인 경우 유일하지 못하므로 가역 조건을 만족하는 추정량이 유일한 추정량으로 얻어졌고, 조건최소제곱 추정량은 근사추정량이 얻어졌다. 모의 실험을 통하여 근사조건제곱 추정량은 율-워커 추정량보다 평균제곱오차면에서 훨씬 좋은 추정량으로 나타났다.

  • PDF

한국 COVID-19 확진자 수에 대한 시계열 분석: HAR-TP-T 모형 접근법 (Time series analysis for Korean COVID-19 confirmed cases: HAR-TP-T model approach)

  • 유성민;황은주
    • 응용통계연구
    • /
    • 제34권2호
    • /
    • pp.239-254
    • /
    • 2021
  • 이 논문에서는, 2개의 혼합된 t-분포(TP-T)의 오차과정을 따르는 이질적 자기회귀 (HAR) 모형을 이용하여, 한국 코로나 (COVID-19) 확진자 수 데이터에 대한 시계열 분석, 즉 추정과 예측에 대하여 연구한다. HAR-TP-T 시계열 모형을 고려하여 HAR 모형의 계수 뿐 아니라 TP-T 오차과정의 모수를 추정하고자 단계별 추정법을 제안한다. 본 연구에서 제안하고 있는 단계별 추정법은, HAR 계수 추정을 위해서는 통상적 최소제곱추정법을 채택하고, TP-T 모수 추정을 위해서는 최대우도추정법을 이용한다. 단계별 추정법에 대한 모의실험을 수행하여, 성능이 우수함을 입증한다. 한국 코로나 확진자 수에 대한 실증적 데이터 분석에서, HAR 모형에서의 차수 p = 2, 3, 4에 대해, 모형의 평균제곱오차가 최소가 되도록 하는 최적화 시간간격(optimal lag)을 포함하여, 여러가지 시간간격을 고려한 HAR-TP-T 모형의 모수 추정값을 계산한다. 제안된 단계별 추정방법과 기존의 MLE만의 방법을, 추정 결과를 제시함으로 함께 비교한다. 본 연구에서 제안하고 있는 추정은 두 가지의 오차 측면, 즉 HAR 모형의 평균제곱오차와 잔차분포에 대한 밀도함수 추정의 평균제곱오차, 두 측면에서 모두 우수함을 입증하였다. 나아가, 추정 결과를 활용한 코로나 확진자 수 예측을 수행하였고, 예측정확도의 한 측도로서 mean absolute percentage error (MAPE)를 계산하여 0.0953%의 매우 작은 오차값을 얻었다. 본 연구에서 선택한 최적화 시간간격을 고려한 HAR-TP-T 시계열 모형 및 단계별 추정 방법은, 정확한 한국 코로나 확진자 수 예측 성능을 제공한다고 할 수 있다.

평면공간에서 다중 센서간 도달 시간차를 이용한 해석적인 최소제곱오차 음원 위치 추정 방법 (Closed-form Nonlinear Least-Squares Source Localization from Time-Difference of Arrival Measurements in Planar Space)

  • 신동훈
    • 한국군사과학기술학회지
    • /
    • 제14권4호
    • /
    • pp.694-699
    • /
    • 2011
  • A closed-form technique is presented for estimating a single source location from a set of noisy time delay measurements between distributed sensors. The localization formula is derived from nonlinear least squares minimization over the unknowns of target range and bearing in polar coordinates. Computer simulation results are provided for the purpose of performance analysis. Constrained least squares minimization method with prior source location information is also discussed.

선형 최소제곱오차 알고리즘을 응용한 3차원 표적 위치 추정 기법 (Estimation Techniques for Three-Dimensional Target Location Based on Linear Least Squared Error Algorithm)

  • 한정재;정윤환;노상욱;박소령;강도근;최원규
    • 한국통신학회논문지
    • /
    • 제41권7호
    • /
    • pp.715-722
    • /
    • 2016
  • 이 논문에서는 하나의 표적을 다수의 레이더에서 감지하였을 때 3차원 선형 최소제곱오차 알고리즘을 활용하여 정보를 융합함으로써 표적의 위치를 추정하는 기법을 유도하고, 표적에 대한 GPS 측정 정보를 결합하는 기법과 정보에 가중치를 두어 결합하는 기법으로 확장하는 방법을 제안한다. 모의실험을 통하여 제안한 표적 위치 추정기법들이 추정 오차를 줄일 수 있음을 확인하고, 가중치를 두어 정보를 결합하면 측정 정보가 부정확한 경우에도 표적 위치 추정 성능이 강인할 수 있음을 보인다.

자기회귀모형에서의 로버스트한 모수 추정방법들에 관한 연구 (A Comparison of Robust Parameter Estimations for Autoregressive Models)

  • 강희정;김순영
    • Journal of the Korean Data and Information Science Society
    • /
    • 제11권1호
    • /
    • pp.1-18
    • /
    • 2000
  • 본 논문에서는 가장 많이 사용되는 시계열 모형중의 하나인 자기회귀모형에서 모수를 추정하는 방법으로 최소 절대 편차 추정법(least absolute deviation estimation)을 포함한 로버스트한 추정방법 (robust estimation)의 사용을 제안하고 모의 실험을 통하여 이러한 방법들을 기존의 최소 제곱 추정 방법과 예측의 관점에서 비교 검토하여 시계열 자료분석에서의 로버스트한 모수 추정 방법의 유효성을 확인해 보고자 한다.

  • PDF