• Title/Summary/Keyword: 최소위상

Search Result 329, Processing Time 0.04 seconds

SSQUSAR : A Large-Scale Qualitative Spatial Reasoner Using Apache Spark SQL (SSQUSAR : Apache Spark SQL을 이용한 대용량 정성 공간 추론기)

  • Kim, Jonghoon;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.2
    • /
    • pp.103-116
    • /
    • 2017
  • In this paper, we present the design and implementation of a large-scale qualitative spatial reasoner, which can derive new qualitative spatial knowledge representing both topological and directional relationships between two arbitrary spatial objects in efficient way using Aparch Spark SQL. Apache Spark SQL is well known as a distributed parallel programming environment which provides both efficient join operations and query processing functions over a variety of data in Hadoop cluster computer systems. In our spatial reasoner, the overall reasoning process is divided into 6 jobs such as knowledge encoding, inverse reasoning, equal reasoning, transitive reasoning, relation refining, knowledge decoding, and then the execution order over the reasoning jobs is determined in consideration of both logical causal relationships and computational efficiency. The knowledge encoding job reduces the size of knowledge base to reason over by transforming the input knowledge of XML/RDF form into one of more precise form. Repeat of the transitive reasoning job and the relation refining job usually consumes most of computational time and storage for the overall reasoning process. In order to improve the jobs, our reasoner finds out the minimal disjunctive relations for qualitative spatial reasoning, and then, based upon them, it not only reduces the composition table to be used for the transitive reasoning job, but also optimizes the relation refining job. Through experiments using a large-scale benchmarking spatial knowledge base, the proposed reasoner showed high performance and scalability.

A 4-bit optical true time-delay for phased array antennas using 2×2 optical MEMS switches and fiber-optic delay lines (2×2 광 MEMS 스위치와 광섬유 지연선로를 이용한 위상배열 안테나용 4-비트 광 실시간 지연선로)

  • 정병민;윤영민;신종덕;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.385-390
    • /
    • 2004
  • In this paper, we designed a 4-bit optical true time-delay(TTD) for phased array antennas(PAAs), which is composed of a wavelength-fixed optical source, 2 ${\times}$ 2 optical MEMS switches, and fiber-optic delay lines. A 4-bit TTD with a unit time delay difference of 6 ps for 10-GHz PAAs has been implemented. Measurement results on time delay show an error of -0.4 ps at maximum, corresponding to a radiation angle error of less than 1.63$^{\circ}$. Thus, the TTD implemented in this research performs in excellent agreement with theory. Each TTD line, composed of MEMS switches and fiber-optic delay lines, connected to the corresponding antenna element has insertion loss in between 1.36 ㏈ and 2.40 ㏈ depending upon the setup of the switches. On the other hand, the insertion loss difference between TTD lines was 0.32 ㏈ at maximum for a fixed radiation angle. The TTD structure proposed in this paper might be more reliable and economical than those previously proposed using tunable wavelength sources if proper power equalization either with gain control of RF amplifiers or variable attenuators is achieved.

A 65-nm CMOS Low-Power Baseband Circuit with 7-Channel Cutoff Frequency and 40-dB Gain Range for LTE-Advanced SAW-Less RF Transmitters (LTE-Advanced SAW-Less 송신기용 7개 채널 차단 주파수 및 40-dB 이득범위를 제공하는 65-nm CMOS 저전력 기저대역회로 설계에 관한 연구)

  • Kim, Sung-Hwan;Kim, Chang-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.678-684
    • /
    • 2013
  • This paper describes a low-power baseband circuit for SAW-less LTE-Advanced transmitters. The proposed transmitter baseband circuit consists of a 2nd-order Tow-Thomas type active RC-LPF and a 1st-order passive RC LPF. It can provide a 7 multi-channel cut-off frequencies and wide gain control range of -41 dB ~ 0 dB with a 1-dB step. The proposed 2nd-order active RC-LPF adopts an op-amp in which three other sub-op amps are in parallel connected to reduce DC current for different cutoff frequency. In addition, each sub-op amp adopts both Miller and feed-forward phase compensation method to achieve an UGBW of more than 1-GHz with a small DC power consumption. The proposed baseband circuit is implemented in 65-nm CMOS technology, consuming DC power from 6.3 mW to 24.1 mW from a 1.2V supply voltage for each different cut-off frequency.

Diurnal Effect Compensation Algorithm for a Backup and Substitute Navigation System of GPS (GPS 백업 및 대체 항법을 위한 지상파 신호의 일변효과 보상 방안)

  • Lee, Young-Kyu;Lee, Chang-Bok;Yang, Sung-Hoon;Lee, Jong-Koo;Kong, Hyun-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1225-1232
    • /
    • 2008
  • In this paper, we describe a compensation method of diurnal effect which is one of the factors giving large effect on the performance when using ground-wave signals like Loran-C for a backup and substitute navigation system of global satellite navigation system such as GPS, and currently many researches of the topics are doing in USA and in Europe. In order to compensate diurnal effect, we find periodic frequency components by using the Least Square Spectral Analysis (LSSA) method at first and then compensate the effect by subtracting the estimated compensation signal, obtained by using the estimated amplitude and phase of the individual frequency component, from the original signal. In this paper, we propose a simple compensation algorithm and analysis the performance through simulations. From the results, it is observed that the amplitude and phase can be estimated with under 5 % and 0.17 % in a somewhat poor receiving situation with 0 dB Signal to Noise Ratio (SNR). Also, we analyze the obtainable performance improvement after compensation by using the measured Loran-C data. From the results, it is observed that we can get about 22 % performance improvement when a moving average with 5 minutes interval is employed.

SOM-Based $R^{*}-Tree$ for Similarity Retrieval (자기 조직화 맵 기반 유사 검색 시스템)

  • O, Chang-Yun;Im, Dong-Ju;O, Gun-Seok;Bae, Sang-Hyeon
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.507-512
    • /
    • 2001
  • Feature-based similarity has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects. the performance of conventional multidimensional data structures tends to deteriorate as the number of dimensions of feature vectors increase. The $R^{*}-Tree$ is the most successful variant of the R-Tree. In this paper, we propose a SOM-based $R^{*}-Tree$ as a new indexing method for high-dimensional feature vectors. The SOM-based $R^{*}-Tree$ combines SOM and $R^{*}-Tree$ to achieve search performance more scalable to high-dimensionalties. Self-Organizingf Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two-dimensional space. The map is called a topological feature map, and preserves the mutual relationships (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. We experimentally compare the retrieval time cost of a SOM-based $R^{*}-Tree$ with of an SOM and $R^{*}-Tree$ using color feature vectors extracted from 40,000 images. The results show that the SOM-based $R^{*}-Tree$ outperform both the SOM and $R^{*}-Tree$ due to reduction of the number of nodes to build $R^{*}-Tree$ and retrieval time cost.

  • PDF

Characteristics of Heat Transfer in Three-Phase Swirling Fluidized Beds (삼상 Swirling 유동층에서 열전달 특성)

  • Son, Sung-Mo;Shin, Ik-Sang;Kang, Yong;Cho, Yong-Jun;Yang, Hee-Chun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.56-62
    • /
    • 2008
  • Characteristics of heat transfer were investigated in a three-phase swirling fluidized bed whose diameter was 0.102 m and 2.5 m in height. Effects of gas and liquid velocities, particle size and liquid swirling ratio ($R_S$) on the immersed heater-to-bed overall heat transfer coefficient were examined. The heat transfer characteristics between the immersed heater and the bed was well analyzed by means of phase space portraits and Kolmogorov entropy(K) of the time series of temperature difference fluctuations. The phase space portraits of temperature difference fluctuations became stable and periodic and the value of Kolmogorov entropy tended to decrease with increasing the value of liquid swirling ratio from 0.1 to 0.4. The value of Kolmogorov entropy exhibited its minimum with increasing liquid swirling ratio. The value of overall heat transfer coefficient (h) showed its maximum with the variation of liquid velocity, bed porosity or liquid swirling ratio, but it increased with increasing gas velocity and particle size. The value of K exhibited its maximum at the liquid velocity at which the h value attained its maximum. The overall heat transfer coefficient and Kolmogorov entropy were well correlated in terms of dimensionless groups and operating variables.

Determining the Orientations of Broadband Stations in South Korea using Ambient Noise Cross-correlation (배경잡음 교차상관을 이용한 국내 광대역 지진계의 방위각 보정값 측정)

  • Lee, Sang-Jun;Rhie, Junkee
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.85-90
    • /
    • 2015
  • Orientation corrections for Korean seismic stations were calculated by using ambient noise cross-correlation. This method uses Rayleigh waves extracted from ambient noise cross-correlation instead of teleseismic waveforms from earthquakes, which have been generally used for previous studies. The theoretical background of the method is that the phase of radial-vertical cross-correlation function should be the same as that of $90^{\circ}$ phase-shifted vertical-vertical cross-correlation function. The results calculated from stacked cross-correlograms from Jan. 2007 to Sep. 2008 are comparable to the previous results obtained from teleseismic waveforms. In addition, overall the standard deviations of orientation corrections are less than $5^{\circ}$. The temporal variation in orientation corrections calculated for every 30 days shows no significant change and also standard deviations of them are mostly less than $5^{\circ}$. This means that the orientations of stations used in this study have been kept constant during the period. The sensitivity test for stacking period of the ambient noise cross-correlation method shows that continuous ambient noise record of at least about 30 days is required for estimating reliable orientation corrections.

Optimal Determination of Marine Seismic Data Processing Parameter for Domi-Sediment Basin (도미퇴적분지 해양탄성파 탐사자료 최적 전산처리 변수도출)

  • Cheong, Snons;Kim, Won-Sik;Koo, Nam-Hyung;Yoo, Dong-Geun;Lee, Ho-Young;Shin, Won-Chul;Park, Keun-Pil
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.279-285
    • /
    • 2008
  • Korea Institute of Geoscience & Mineral Resources (KIGAM) carried out 2 dimensional multi-channel seismic surveys for Domi-Basin of east-southern part of Jeju Island, South Sea, Korea in 2007. The purpose of this survey is to investigate the structure of acoustic basement and the potential of energy resources in the Korean shelf. It is essential to produce fine stack and migration section to understand the structure of basement. However a basement can not be clearly defined where multiples exist between sea surface and seafloor. This study aimed at designing the optimal data processing parameter, especially to eliminate the peg-leg multiples. Main data processing procedure is composed of minimum phase predictive deconvolution, velocity analysis and Radon filter. We tested the efficiency of processing parameter from stack sections of each step. Our results confirmed that processing parameters are suitable for the seismic data of Domi-Basin.

The Analysis of R&D Investment Factors for Enhancing the Regional Domestic Competitiveness in China (중국의 지역 내 경쟁력 제고를 위한 R&D 투자요인 분석)

  • Yoon, Daisang;Lee, Jinho;Park, Sang-Hyun
    • Journal of Korea Technology Innovation Society
    • /
    • v.20 no.3
    • /
    • pp.805-836
    • /
    • 2017
  • China has become the group of two (G2) in almost fields including the scientific technology following the economic growth and joining the WTO in 2001. The main reason is that the government had strong intention for the industrialization of the scientific technology and connected the scientific technology and the economy. Typically, for analyzing the cause of the meteoric rise of China, the competitiveness of the scientific technology was analyzed by the entire score of the nation. However, in the case of China, there are differences in the pattern of the development between the eastern, central, and western province. Also, the industrialization and the competitiveness of the scientific technology are difference because each province established the decentralization of power. Therefore, it is more meaningful to analyze the main factors of Chinese economic growth on a province unit. In this study, therefore, we analyzed the competitive of R&D in China by 124 indexes in 31 areas. The data was analyzed by Partial least squares regression analysis. In conclusion, the scale of the area and the ability of R&D of the company are very important factors for total amount of production in the area. And the journals, patents, the transfer of technical know-how and the investment of R&D are main factors of the amount of export on the high-tech product. According to these results, the factors which make the difference in the industrialization and the competitiveness of the scientific technology in China were analyzed. Finally, it will be helpful to establish the policy for the development of the industrialization and the scientific technology in Korea.

Comparison of Head-related Transfer Function Models Based on Principal Components Analysis (주성분 분석법을 이용한 머리전달함수 모형화 기법의 성능 비교)

  • Hwang, Sung-Mok;Park, Young-Jin;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.6
    • /
    • pp.642-653
    • /
    • 2008
  • This study deals with modeling of head-related transfer functions(HRTFs) using principal components analysis(PCA) in the time and frequency domains. Four PCA models based on head-related impulse responses(HRIRs), complex-valued HRTFs, augmented HRTFs, and log-magnitudes of HRTFs are investigated. The objective of this study is to compare modeling performances of the PCA models in the least-squares sense and to show the theoretical relationship between the PCA models. In terms of the number of principal components needed for modeling, the PCA model based on HRIR or augmented HRTFs showed more efficient modeling performance than the PCA model based on complex-valued HRTFs. The PCA model based on HRIRs in the time domain and that based on augmented HRTFs in the frequency domain are shown to be theoretically equivalent. Modeling performance of the PCA model based on log-magnitudes of HRTFs cannot be compared with that of other PCA models because the PCA model deals with log-scaled magnitude components only, whereas the other PCA models consider both magnitude and phase components in linear scale.