• Title/Summary/Keyword: 최대 전단보강비

Search Result 81, Processing Time 0.026 seconds

Shear Behavior of Reinforced Concrete Beams Strengthened with CFRP Strips (탄소섬유판 (CFRP Strip)으로 보강된 철근콘크리트 부재의 전단거동)

  • Lim, Dong-Hwan;Nam, Min-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.299-305
    • /
    • 2008
  • The main goal of this study was to examine the shear behavior of reinforced concrete beams strengthened with CFRP strups. Seven rectangular beams were tested. The test variables were the configuration types, spacing length of CFRP strips and the amount of reinforced stirrups bars. From this experimental study, the shear capacity of beams strengthened with CFRP increased significantly compared to the beam without CFRP strip. Maximum increase of ultimate shear strength was found about 100% more than that of the beam without a CFRP strip and the CFRP strips attached in the shear region can resist the occurrence of the initial shear cracks and the propagation of major shear cracks. In this test, most of the shear strengthened beams failed suddenly due to the debonding of CFRP strips. A calculation of the shear strength of reinforced beams strengthened with CFRP strips based on the effective stresses was conducted and the comparisons were made with the test results.

Shear Capacity of Reinforced Concrete Continuous T-Beams Externally Strengthened with Wire Rope Units (와이어로프로 외부 보강된 철근콘크리트 연속 T형 보의 전단내력)

  • Yang, Keun-Hyeok;Sim, Jae-Il;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.773-783
    • /
    • 2007
  • A simple unbonded-type shear strengthening technique for reinforced concrete beams using wire rope units is developed. Six two-span continuous T-beams externally strengthened with wire rope units and an unstrengthened control beam were tested. The main variables investigated were the amount and prestressing force of wire rope units. All specimens had the same geometrical dimension and arrangement of internal reinforcement. Influence of the distribution of vertical stresses in beam web owing to the prestressing force of wire rope units on the diagonal shear cracking load and the ultimate shear capacity of beams tested is presented. Based on the current study, it can be concluded that the amount and initial prestress of wire rope should be limited to be above 2.5 times the minimum shear reinforcement ratio specified in ACI 318-05 and below 0.6 times its own tensile strength, respectively, to ensure the enhancement of shear capacity and ductile failure mode of the strengthened beams. A numerical analysis based on the upper-bound theorem is developed to assess the shear capacity of continuous T-beams strengthened with wire rope units. From the comparisons of measured and predicted shear capacities, a better agreement is achieved in the proposed numerical analysis than in empirical equations recommended by ACI 318-05.

Shear Performance on SFRC Beam Using Recycled Coarse Aggregate (순환골재를 사용한 SFRC 보의 전단성능)

  • Kim, Seongeun;Jeong, Jaewon;Kim, Seunghun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.189-196
    • /
    • 2018
  • Degraded shear performance of reinforced concrete members with recycled coarse aggregate (RCA) compared to flexural strength is a problem. To address this, steel fibers can be used as concrete reinforcement material. In this study, the strength and deformation characteristics of SFRC beams using RCA were to be determined by shear tests. Major experimental variables include the volume fraction of steel fiber (0, 0.5%, 1%), the replacement rate of RCA (0%, 100%), and the shear span ratio (a/d = 1, 2). As a result of the experiment, the shear strength of the specimen increased as the rate of mixing steel fiber increased. For specimens with RCA and 1% steel fiber, the maximum shear strengths increased by 1.77 - 6.25% compared to specimens with normal coarse aggregate (NCA). On the other hand, at 0-0.5% steel fiber, the shear strengths of RCA specimens were reduced by 24.2% to 49.2% compared to NCA specimens. This indicates that reinforcement with 1% volume fraction of steel fiber greatly contributes to preventing shear strength reduction due to the use of RCA.

Performance of Reinforced Concrete Beams Strengthened with Bi-directional CFRP Strips (이 방향 탄소섬유 스트립을 사용하여 보강된 콘크리트 보의 거동에 대한 연구)

  • Kim, Changhyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.30-36
    • /
    • 2018
  • Researches on strengthening and rehabilitation are important since structural capacity is degraded by deterioration or damage of structural members. An effective strengthening scheme such as an externally bonded Carbon Fiber Reinforced Polymers (CFRP) can improve the structural performance of a concrete structure in a cost-effective way. Therefore, many experimental studies on strengthening methods have been widely carried out. In regards to the shear strengthening of a concrete beam, variables of the experimental studies were the amount of CFRP, the angle of the strip, the width of the strip, and the interaction between the materials. However, there are insufficient researches on bi-directional CFRP layout compared to the previous researches. In this study, a total of ten concrete beams were designed and tested to evaluate the shear strengthening effect using CFRP strips. The effectiveness of strengthening was investigated based on the shear contribution of materials, strain distribution of stirrup, and the maximum shear capacity of specimens.

Strength Evaluation for Doubly Reinforced Composite Beams with Steel Fiber Concretes and Steel Angles (강섬유 콘크리트와 형강을 사용한 합성 복근보의 강도 특성)

  • Oh, Young-Hun;Nam, Young-Gil;Lee, Jae-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.755-763
    • /
    • 2008
  • The purpose of this study is to investigate the structural performance of doubly reinforced composite beams with steel fiber concretes and steel angles. For this purpose, total 6 specimens whose variables are shear span-to-depth ratio, existence of shear reinforcement, and shear reinforcement details, are made and tested. All specimens are constructed of steel fiber concretes with specified compressive strength of 30 MPa and steel fiber volumn content of 1%. From the experimental results, structural performance of doubly reinforced composite beams are evaluated in terms of strength, stiffness, ductility, and energy absorbing capacity. For the better structural performance, it is recommended that the composite beam is designed with diagonal shear reinforcement.

Cyclic Lateral Load Test on the Punching Shear Strength and the Lateral Displacement Capacity of Slab-Column Connections (슬래브-기둥 접합부의 펀칭강도 및 횡변위 성능에 관한 반복 횡하중 실험)

  • Choi, Jung-Wook;Song, Jin-Gyu;Kim, Jun-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.99-108
    • /
    • 2007
  • In the flat-plate slab design of the KCI and ACI building code, the punching shear strength of connections with shear reinforcement can increase one and half times to that of connections without shear reinforcement. And the ACI-ASCE committee 352 recommendations propose limiting the direct shear ratio $V_g$/$V_c$ on interior connections to 0.4 to insure adequate drift capacity. In this study, four interior column-slab connections were tested to look into the punching shear strength and the lateral displacement capacity of the flat-plate slab with and without shear reinforcement under cyclic lateral loading. Based on the test results, it is found that the provision about punching shear strength in the codes may appropriate for the gravity loading only whereas it is unconservative for the lateral loading and that the limit of ACI-ASCE committee 352 appears conservative.

Nonlinear Biaxial Shear Model for Fiber-Reinforced Cementitious Composite Panels (섬유보강 고인성 시멘트 복합체 패널의 2축 전단 비선형 모델)

  • Cho, Chang-Geun;Kim, Yun-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.597-605
    • /
    • 2009
  • The present study has been proposed a model for the in-plane shear behavior of reinforced(Engineered Cementitious Composite(ECC) panels under biaxial stress states. The model newly considers the high-ductile tensile characteristic of cracked ECC by its multiple micro-cracking mechanism, the compressive strain-softening characteristic of cracked ECC, and the shear transfer mechanism in the cracked interface of ECC element. A series of numerical analyses were performed, and the predicted curves were compared with experimental results. The proposed in-plane shear model, R-ECC-MCFT, was found to be well matched with the experimental results, and it was also demonstrated that reinforced ECC panel showed more improved in-plane shear strength and post peak behavior, in comparing with the conventional reinforced concrete panel.

Experimental Study on Shear Strength of Steel Fiber Reinforced Concrete Beams (강섬유로 보강된 콘크리트 보의 전단강도에 관한 실험적 연구)

  • Kal, Kyoung-Wan;Kim, Kang-Su;Lee, Deuck-Hang;Hwang, Jin-Ha;Oh, Young-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.160-170
    • /
    • 2010
  • Steel Fiber Reinforced Concrete (SFRC) beams has greater shear strength than typical reinforced concrete beams due to the high tensile strength of steel fibers. In this research, an experiment has been conducted to investigate the shear behavior of SFRC beams, and especially, the portion of shear resistance by uncracked compressive concrete section has been measured. Based on the test results in this study and 87 test data collected from literature, the accuracy of the existing equations for the estimation of shear strength has been evaluated. The shear strength of SFRC beams increased as more steel fibers were mixed. However, it is considered that the most efficient amount of steel fiber for enhancement of shear strength would be between 1% and 2% in that the specimen with 0.5% of steel fibers were abruptly failed after inclined cracking, and that the specimen with 2.0% of steel fibers showed a relatively low efficiency in increasing shear strength. The portion of shear resistance by the uncracked compressive concrete section was measured to be greater than 21%, and the equation proposed by Oh et al. provided the best accuracy on the estimation of shear strength of SFRC beams among the approaches evaluated in this study.

A Study on Structural Performance Evaluation of RC Beams Strengthened with CFRP Plate (탄소섬유판으로 보강된 철근콘크리트 보의 보강성능에 관한 연구)

  • Kim Joong-Koo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.6 s.22
    • /
    • pp.212-217
    • /
    • 2004
  • Carbon fiber reinforced plastic(CFRP) plate Is one of the alterative materials for soengthening of reinforced and prestressed connote members due to excellent strength and light weight In this paper, the behavior of beams strengthened with CFRP plate and CFS(Carbon fiber sheet) is observed and analyzed from the test results. Especially specimens with thick plate is tested when large moment and large shear lone appear in same position. The main failure mode is a peeling-off of the CFRP plate near the loading points due to flexural-shear crack, Because of this failure mode, failure load is not linearly proportional to the thickness of CFRP plates. When beam is wrapped with CFS around oかy loading point it does not influence on the failure loads. Depending on the loading pattern, it is necessary to consider different design criteria for reinforced concrete members with external reinforcement. When line moment and large shear force appear in same location, maximum thickness may limit to 0.6mm and ratio between moment of strengthened beam and moment of unstrengthened beam is proposed 1.5-2.0. In order to use the plate of thicker than 6mm, CFS may be extended to the location which moment of strengthened beam is 1.5 times than moment of unstrengthened beam.

Hysteretic Behavior of R/C Shear Wall with Various Lateral Reinforcements in Boundary Columns for Cyclic Lateral Load (경계부재내 횡보강근 배근방법에 따른 R/C전단벽의 반복하중에 대한 이력거동)

  • Seo, Soo-Yeon;Oh, Tae-Gun;Kim, Kyeong-Tae;Yoon, Seong-Joe
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.357-366
    • /
    • 2010
  • This paper presents experimental results about shear wall with various lateral reinforcement details in boundary elements. The research objective is to study the structural behavior of shear wall with boundary column confined by rectangular spiral hoops and headed cross ties developed to improve workability in the fabrication of boundary columns. These two details can be fabricated in a factory and put together on-site after being delivered so that the construction work may be reduced. Main parameters in the experimental study were the types of hoop and cross tie: rectangular spiral hoop and headed cross tie vs. standard hoop and cross tie with hook. Four half scaled shear wall specimens with babel shape were made and tested by applying horizontal cyclic load under constant axial force, 10% of nominal compressive strength of concrete. Based on the test result, it was shown that the shear wall with rectangular spiral hoop and headed cross tie in boundary columns has structural capacity compatible with conventional shear wall. The specimen SW-Hh which has bigger hoop bar and higher volumetric ratio of transverse reinforcements than other showed improved energy dissipating characteristic but it presented a rapid reduction of strength after peak point. The results indicates that, it is necessary to consider volumetric ratio of transverse reinforcements as well as hoop space in designing of shear wall with boundary columns for improved strength and ductility.