• Title/Summary/Keyword: 최대 사후 확률

Search Result 59, Processing Time 0.024 seconds

A Statistical Model-Based Voice Activity Detection Employing the Conditional MAP Criterion with Spectral Deviation (조건 사후 최대 확률과 음성 스펙트럼 변이 조건을 이용한 통계적 모델 기반의 음성 검출기)

  • Kim, Sang-Kyun;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.324-329
    • /
    • 2011
  • In this paper, we propose a novel approach to improve the performance of a statistical model-based voice activity detection (VAD) which is based on the conditional maximum a posteriori (CMAP) with deviation. In our approach, the VAD decision rule is expressed as the geometric mean of likelihood ratios (LRs) based on adapted threshold according to the speech presence probability conditioned on both the speech activity decisions and spectral deviation in the pervious frame. Experimental results show that the proposed approach yields better results compared to the CMAP-based VAD using the LR test.

Statistical Model-Based Voice Activity Detection Using the Second-Order Conditional Maximum a Posteriori Criterion with Adapted Threshold (적응형 문턱값을 가지는 2차 조건 사후 최대 확률을 이용한 통계적 모델 기반의 음성 검출기)

  • Kim, Sang-Kyun;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.76-81
    • /
    • 2010
  • In this paper, we propose a novel approach to improve the performance of a statistical model-based voice activity detection (VAD) which is based on the second-order conditional maximum a posteriori (CMAP). In our approach, the VAD decision rule is expressed as the geometric mean of likelihood ratios (LRs) based on adapted threshold according to the speech presence probability conditioned on both the current observation and the speech activity decisions in the pervious two frames. Experimental results show that the proposed approach yields better results compared to the statistical model-based and the CMAP-based VAD using the LR test.

Improved Global-Soft Decision Incorporating Second-Order Conditional MAP for Speech Enhancement (음성향상을 위한 2차 조건 사후 최대 확률기법 기반 Global Soft Decision)

  • Kum, Jong-Mo;Chang, Joon-Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6C
    • /
    • pp.588-592
    • /
    • 2009
  • In this paper, we propose a novel method to improve the performance of the global soft decision which is based on the second-order conditional maximum a posteriori (CMAP). Conventional global soft decision scheme has an disadvantage in that the speech absence probability adjusted by a fixed-parameter was sensitive to the various noise environments. In proposed approach using the second-order CMAP, speech absence probability value is more flexible which exploit not only the current observation but also the speech activity decisions in the previous two frames. Experimental results show that the proposed improved global soft decision method based on second-order conditional MAP yields better results compared to the conventional global soft decision technique with the performance criteria of the ITU-T P. 862 perceptual evaluation of speech quality (PESQ).

A Probabilistic Detection Algorithm for Noiseless Group Testing (무잡음 그룹검사에 대한 확률적 검출 알고리즘)

  • Seong, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1195-1200
    • /
    • 2019
  • This paper proposes a detection algorithm for group testing. Group testing is a problem of finding a very small number of defect samples out of a large number of samples, which is similar to the problem of Compressed Sensing. In this paper, we define a noiseless group testing and propose a probabilistic algorithm for detection of defective samples. The proposed algorithm is constructed such that the extrinsic probabilities between the input and output signals exchange with each other so that the posterior probability of the output signal is maximized. Then, defective samples are found in the group testing problem through a simulation on the detection algorithm. The simulation results for this study are compared with the lower bound in the information theory to see how much difference in failure probability over the input and output signal sizes.

The Comparison of Speaker Adaptation Methods (화자 적응 방법들의 비교)

  • 황영수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.61-66
    • /
    • 1999
  • In this paper, we proposed various speaker adaptation methods and studied the performance of these methods. Methods which were studied in this paper are MAPE(Maximum A Posteriori Probability Estimation), Linear Spectral Estimating, Multi-Layer Perceptron and ARTMAP. In order to evaluate the performance of these methods, we used Korean isolated digits as the experimental data, the hybrid speaker adaptation method, which unified MAPE, linear spectral estimating and output probability of SCHMM, showed the better recognition result than those which performed other methods. And the method using ARTMAP showed the similar result to above hybrid method.

  • PDF

Speech Enhancement based on Minima Controlled Recursive Averaging Technique Incorporating Second-order Conditional Maximum a posteriori Criterion (2차 조건 사후 최대 확률 기반 최소값 제어 재귀평균기법을 이용한 음성향상)

  • Kum, Jong-Mo;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.132-138
    • /
    • 2009
  • In this paper, we propose a novel approach to improve the performance of minima controlled recursive averaging (MCRA) which is based on the second-order conditional maximum a posteriori (CMAP). From an investigation of the MCRA scheme, it is discovered that the MCRA method cannot take full consideration of the inter-frame correlation of voice activity since the noise power estimate is adjusted by the speech presence probability depending on an observation of the current frame. To avoid this phenomenon, the proposed MCRA approach incorporates the second-order CMAP criterion in which the noise power estimate is obtained using the speech presence probability conditioned on both the current observation and the speech activity decisions in the previous two frames. Experimental results show that the proposed MCRA technique based on second-order conditional MAP yields better results compared to the conventional MCRA method.

Speech Enhancement Based on Minima Controlled Recursive Averaging Technique Incorporating Conditional MAP (조건 사후 최대 확률 기반 최소값 제어 재귀평균기법을 이용한 음성향상)

  • Kum, Jong-Mo;Park, Yun-Sik;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.256-261
    • /
    • 2008
  • In this paper, we propose a novel approach to improve the performance of minima controlled recursive averaging (MCRA) which is based on the conditional maximum a posteriori criterion. A crucial component of a practical speech enhancement system is the estimation of the noise power spectrum. One state-of-the-art approach is the minima controlled recursive averaging (MCRA) technique. The noise estimate in the MCRA technique is obtained by averaging past spectral power values based on a smoothing parameter that is adjusted by the signal presence probability in frequency subbands. We improve the MCRA using the speech presence probability which is the a posteriori probability conditioned on both the current observation the speech presence or absence of the previous frame. With the performance criteria of the ITU-T P.862 perceptual evaluation of speech quality (PESQ) and subjective evaluation of speech quality, we show that the proposed algorithm yields better results compared to the conventional MCRA-based scheme.

Self-Adaptation Algorithm Based on Maximum A Posteriori Eigenvoice for Korean Connected Digit Recognition (한국어 연결 숫자음 인식을 일한 최대 사후 Eigenvoice에 근거한 자기적응 기법)

  • Kim Dong Kook;Jeon Hyung Bae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.8
    • /
    • pp.590-596
    • /
    • 2004
  • This paper Presents a new self-adaptation algorithm based on maximum a posteriori (MAP) eigenvoice for Korean connected digit recognition. The proposed MAP eigenvoice is developed by introducing a probability density model for the eigenvoice coefficients. The Proposed approach provides a unified framework that incorporates the Prior model into the conventional eigenvoice estimation. In self-adaptation system we use only one adaptation utterance that will be recognized, we use MAP eigenvoice that is most robust adaptation. In series of self-adaptation experiments on the Korean connected digit recognition task. we demonstrate that the performance of the proposed approach is better than that of the conventional eigenvoice algorithm for a small amount of adaptation data.

A study on classification accuracy improvements using orthogonal summation of posterior probabilities (사후확률 결합에 의한 분류정확도 향상에 관한 연구)

  • 정재준
    • Spatial Information Research
    • /
    • v.12 no.1
    • /
    • pp.111-125
    • /
    • 2004
  • Improvements of classification accuracy are main issues in satellite image classification. Considering the facts that multiple images in the same area are available, there are needs on researches aiming improvements of classification accuracy using multiple data sets. In this study, orthogonal summation method of Dempster-Shafer theory (theory of evidence) is proposed as a multiple imagery classification method and posterior probabilities and classification uncertainty are used in calculation process. Accuracies of the proposed method are higher than conventional classification methods, maximum likelihood classification(MLC) of each data and MLC of merged data sets, which can be certified through statistical tests of mean difference.

  • PDF

Speech Recognition Using the Energy and VQ (에너지와 VQ를 이용한 음성 인식)

  • Hwang, Young-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.3
    • /
    • pp.87-94
    • /
    • 2007
  • In this paper, the performance of the speech recognition and speaker adaptation methods are studied. The speech recognition using energy state and VQ(Vector Quantization) is suggested and the speaker adaptation methods(Maximum a posteriori probability estimation, linear specrum estimation) are considered. The experimental results show that recognition ration using energy state is 2-3 % better than that of general VQ.

  • PDF