• Title/Summary/Keyword: 최대 보행교통량

Search Result 8, Processing Time 0.017 seconds

A Study on Estimating Level-of-Service for Pedestrian Facilities (보행자 시설 서비스 수준 산정에 관한 연구)

  • 김정현;오영태;손영태;박우신
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.149-156
    • /
    • 2002
  • 본 연구는 보행자 시설 중 계단과 대기공간에 대해 공학적으로 합리적인 분석방법을 제공하고 이를 통해 안전하고 편리한 보행시설의 제공을 도모하는 것을 목적으로 하였다. 본 연구를 위해 계단과 대기공간에 대한 외국의 조사방법과 분석방법을 참조, 비교하여 서비스 수준 결정기준을 정하고 용량 값을 산출하여 우리나라 현실에 맞는 적정한 설계기준을 산출하기 위해 노력하였다. 계단의 경우 효과척도로 보행 교통량을 그리고 대기공간에 있어서는 1인당 점유면적을 사용하였다. 현장 조사 결과 계단에서의 보행량은 보행자가 군을 형성했을 경우와 그렇지 않은 경우 최대 보행량에 차이가 나는 것을 고려하여 보행자 군의 형성 여부에 따라 서비스 수준의 기준을 다르게 제시하였으며, 대기공간의 경우에는 1인당 점유면적을 한국인의 평균체형을 기준으로 하여 서비스 수준의 기준을 제시하였다. 계단과 대기공간에 있어서 이러한 조사와 분석을 통해 산출된 결과는 외국의 경우와 다른 값을 나타내는데, 계단에 있어서는 실질적으로 이용할 수 있는 유효계단 폭에 따라 최대 보행 교통량의 타이가 크게 나타났으며, 대기공간의 경우에는 한사람이 점유 할 수 있는 용량상태에서의 공간이 0.2$m^2$/인으로 외국의 경우보다 적게 나타난다.

A Study on Pedestrian signal Warrants at Urbanized Area (도시부 보행자 교통신호기 설치준거 연구)

  • 김윤지;장덕명
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10b
    • /
    • pp.408-408
    • /
    • 1998
  • 교통신호기는 다양한 교통통행에 우선권을 부여하는 교통안전시설물로서, 교통소통과 안전에 지대한 영향을 끼치는 매우 중요한 통제시설이다. 그러나 현행 부적절한 신호기 설치로 차량 교통의 흐름을 방해하거나 교통사고를 증가시키는 경우가 있다. 본 연구는 교통안전시설실무편람에 제세된 9가지 신호기 설치준거 중 보행자 신호기 설치 준거에 대하여 국내도로상황 및 보행자 특성에 맞는 새로운 설치준거를 제시하는데 목적이 있다. 교통운영 측면에서 보면, 보행자 신호기는 보행자가 도로를 횡단하는데 적절한 간격을 찾을 수 없을 때 인위적으로 횡단간격을 만들어 주기 위한 교통제어시설이다. 따라서 보행자가 횡단보도에서 최대로 대기할 수 있는 시간을 기준으로 설치 여부를 결정하는 것으로 가정하고, 보행자가 보도상에서 기다릴 수 있는 최대한도 대기시간은 단일로상의 무신호 횡단보도에 교통신회가 설치되었을 경우 한 주기에서 녹색시간을 감한 시간으로 가정할 수 있다. 무신호 횡단보도 현장조사를 통하여 보행자 횡단행태, 횡단보행속도, 보행자 대기시간 등을 분석하였다. 차량의 간섭에 의한 보행자 회단간격과 차량 교통량과의 관계를 도출하고, 보행자 간섭에 의한 차량 교통량과 보행자 교통량과의 관계를 도출하였다. 결론적으로 차로수별로 차량 교통량과 보행자 교통량 상관관계에 의한 신호기 설치, 설치고려, 미설치 영역을 구분하여 보행자 신호기 설치준거(안)을 제시하였다.

  • PDF

A Study on Model Development of Pedestrian Crossing Capacity at Unsignalized Crosswalks with Pedestrian Refuge Area (중앙분리대 대기공간이 있는 비신호 횡단보도에서의 보행자 횡단용량 모형식 개발)

  • 김상구
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.4
    • /
    • pp.103-111
    • /
    • 2003
  • This study proposes methodology deterimining a basic pedestrian crossing capacity that plays a critical role in the installation of pedestrian signal at the crosswalks. The methodology is based on the pattern of vehicle arrived at the crosswalks. Erlang distribuion is used as headway distribution that can cover the various levels of flow rate. Models using Erlang distribution are represented by Erlang parameter (K) of 1, 2, or 3 at 2-, 4-, or 6-lane roadway in both directions. In addition, this study considered the only type of road with a pedestrian refuge area in the median that is used to wait for the allowable gap provided by the flow of another direction. As a result, the pedestrian capacity decreases as flow rate increases and Erlang parameter increases for the road with the pedestrian refuge. This study develops the models to determine the pedestrian capacity under a variety of flow rates and the outcomes of this study could be used as the criteria for the determination of the installation of pedestrian signal or for the provision of pedestrian refuge in the median of road.

Design Criteria of Traffic Island Considering Pedestrian LOS (보행자 서비스 수준을 고려한 교통섬 설계기준 연구)

  • Park, Byung Ho;Beak, Tae Hun;Jung, Yong Il
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.5
    • /
    • pp.23-31
    • /
    • 2012
  • The objective of this study is to develop the design criteria of traffic island considering pedestrian level of service (LOS). In pursuing the above, this study gives particular emphasis to suggesting the minimum design space of traffic island in order to maintain pedestrian LOS C and D, and the critical pedestrian traffic volume that reflects the intersection geometry (2 lanes per direction) through the simulation analysis. The main results are as follows. First, the spaces of 160 traffic islands, which meet the pedestrian LOS C and D and reflects the pedestrian traffic volume by signal cycle, are drawn by using a commercial simulator VISSIM. The relevant spaces of traffic island in terms of both the pedestrian LOS and the pedestrian traffic volume are evaluated to range from $3.0m^2$ to $41m^2$. Second, the critical pedestrian traffic volume for the operation of traffic island is evaluated to be 1,000-1,300 person/hour at LOS C and 1,600-1,800 person/hour at LOS D, respectively, when a cycle of 120-150 seconds were applied to a intersection with two lanes per direction.

A Dynamic Signal Metering Algorithm Development for Vehicles and Pedestrians at Roundabouts (차량 및 보행자를 고려한 회전교차로 감응식 신호미터링 알고리즘 개발)

  • Lee, Sol;Ahn, Woo-Young;Lee, Seon-Ha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.53-66
    • /
    • 2017
  • In order to improve traffic flow and vehicular safety, installation of roundabouts is encouraging recently. Roundabouts are generally installed at which traffic flow and pedestrian flow is relatively low intersections. Roundabouts reduce vehicle speed, minimize vehicle weaving, and reduce critical conflict points. For these reasons, roundabouts are generally operated unprotected pedestrian crosswalk, thus a shortcoming for pedestrian safety always exists at roundabouts. The purpose of this study is developing a dynamic signal metering algorithm for traffic and pedestrian at four-way-approach with two-lane roundabouts in which three different operation algorithms(fixed-time pedestrian, vehicle signal metering, and vehicle and pedestrian signal metering) are suggested and its performance is tested by using VISSIM. The results of the fixed pedestrian signal operation show that there is a big average delay increase in general and that increases up to 51.4 seconds/vehicle(42.5%) when the total number of approaching vehicle is 3,800 vehicle/hour. However, the results of the simultaneous dynamic signal metering operation for the vehicle and pedestrian crossing with push button show that there is a substantial average delay reduction up to 40.6 seconds/vehicle(42.7%) when the total number of approaching vehicle is 3,000 vehicle/hour.

An Analysis on Signal Control Efficiency in a Three-Leg Intersection Adopting Pedestrian Push-Button System Following Pedestrian volume (3지 교차로에서 보행자 교통량에 따른 보행자작동신호기를 이용한 신호제어효율에 관한 분석)

  • Kim, Eung-Cheol;Cho, Han-Seon;Jung, Dong-Woo;Kim, Hyoung-Soo
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.121-128
    • /
    • 2009
  • This study has proposed the signal operating system to use both semi-actuated signal control and pedestrian push-button as a way to make up for the problems of 3 leg intersections which are operated inefficiently in the signal operation, one of the methods of traffic operations. In case of the semi-actuated signal control, it can reduce delay inside the intersection by serving to uncongested traffic on the main road where there is not much traffic volume on the secondary road and push-button signal can reduce unnecessary waiting time it could happen to vehicles by operating it though there is no pedestrian. Quantitative analysis was tried regarding the average delay reduction per vehicle using VISSIM, microscopic simulation program regarding how much effect it has compared with the existing signal control system and semi-actuated signal control system when the above two advantages are collected. The field test was performed for one three-leg intersection of Incheon. According to respectively signal control method pedestrian traffic changed and executed a sensitivity analysis. The result which compares the average delay time per a vehicle of scenarios, the signal control method of using the pedestrian push-button system in comparison with the fixed signal control method showed to decrease effect of a minimum 3.7 second (10%), a maximum 5.8 second (16%). When the pedestrian traffic volume was 20% or less of the measurement traffic volume, The signal control method of using the pedestrian push-button system appeared to be more efficient the semi-actuated signal control with object intersection.

  • PDF

An Effectiveness Analysis of pedestrian crosswalk signal on roundabout (회전교차로의 보행신호 설치효과 분석)

  • Moon, Joo-Baek;Lee, In-Kyu;Kim, Young-Chan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.2
    • /
    • pp.63-75
    • /
    • 2013
  • Roundabouts have been operated in Europe, America and Australia since the 1970s, and many relevant researches continually was carried out. Though many studies regarding roundabout have been recently conducted in korea, most of them have focused on its operational safety and efficiency. Moreover, roundabout design guideline did not define a clear criteria related to pedestrian in roundabout, but seldom investigate the influences of pedestrian on crosswalk. In this study, we seek ways to operate the pedestrian crosswalk signal on roundabout maximizing their operational effects in exceptional case such as rush hour or intersection near the special facilities. We proved that roundabout signal operation is effective under certain circumstances in according to the number of pedestrian, and suggested the optimal signal timing plan for signalized roundabouts. For pursuing the above, we conducted the simulation test using the VISSIM model. The results show that the operational effectiveness of signalized roundabout was evaluated to be better than non-signalized roundabout in specific pedestrian volume condition. In addition, those results are confirmed using simulation analysis conducted on the real roundabout.

The Effect of Staggered Pedestrian Crossings at Wide Width Intersections (광폭교차로에서 2단 횡단보도 설치 효과분석)

  • Kim, Dong-Nyong;Hong, Yoo-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.23-35
    • /
    • 2011
  • The pedestrian green time is usually long at wide width intersections. This sometimes causes the increase of delay on the whole intersection because of long cycle length and thus small g/C ratio on some direction. In this paper, to improve these problems, staggered pedestrian crossing was evaluated on the vehicular and pedestrian aspects. The results were gained by using both TRANSYT-7F and VISSIM model. The vehicle control delay of the staggered pedestrian crossing was estimated to be decreasing than that of the general pedestrian crossing by 14.9% to 85.6%. The pedestrian average delay of two pedestrian crossing systems was examined by analytical method and VISSIM. According to the analytical method there was no significant difference between each pedestrian crossing system. The pedestrian delay of staggered pedestrian crossing was from 13.4% to 22.3% than the general pedestrian crossing by VISSIM. In conclusion, the staggered pedestrian crossing was more effective than general pedestrian crossing for both the vehicle and the pedestrian. However this conclusion was resulted from micro simulation where traffic volume condition, v/c, was from 0.8 to 1.1.