• Title/Summary/Keyword: 최대출력

Search Result 1,661, Processing Time 0.027 seconds

Development of a Coupled Eulerian-Lagrangian Finite Element Model for Dissimilar Friction Stir Welding (Coupled Eulerian-Lagrangian기법을 이용한 이종 마찰교반용접 해석모델 개발)

  • Lim, Jae-Yong;Lee, Jinho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.7-13
    • /
    • 2019
  • This study aims to develop a FE Model to simulate dissimilar friction stir welding and to address its potential for fundamental analysis and practical applications. The FE model is based on Coupled Eulerian-Lagrangian approach. Multiphysics systems are calculated using explicit time integration algorithm, and heat generations by friction and inelastic heat conversion as well as heat transfer through the bottom surface are included. Using the developed model, friction stir welding between an Al6061T6 plate and an AZ61 plate were simulated. Three simulations are carried out varying the welding parameters. The model is capable of predicting the temperature and plastic strain fields and the distribution of void. The simulation results showed that temperature was generally greater in Mg plates and that, as a rotation speed increase, not the maximum temperature of Mg plate increased, but did the temperature of Al plate. In addition, the model could predict flash defects, however, the prediction of void near the welding tool was not satisfactory. Since the model includes the complex physics closely occurring during FSW, the model possibly analyze a lot of phenomena hard to discovered by experiments. However, practical applications may be limited due to huge simulation time.

Design of 4th Order ΣΔ modulator employing a low power reconfigurable operational amplifier (전력절감용 재구성 연산증폭기를 사용한 4차 델타-시그마 변조기 설계)

  • Lee, Dong-Hyun;Yoon, Kwang-Sub
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1025-1030
    • /
    • 2018
  • The proposed modulator is designed by utilizing a conventional structure employing time division technique to realize the 4th order delta-sigma modulator using one op-amp. In order to reduce the influence of KT/C noise, the capacitance in the first and second integrators reused was chosen to be 20pF and capacitance of third and fourth integrators was designed to be 1pF. The stage variable technique in the low power reconfigurable op-amp was used to solve the stability issue due to different capacitance loads for the reduction of KT/C noise. This technique enabled the proposed modulator to reduce the power consumption of 15% with respect to the conventional one. The proposed modulator was fabricated with 0.18um CMOS N-well 1 poly 6 metal process and consumes 305uW at supply voltage of 1.8V. The measurement results demonstrated that SNDR, ENOB, DR, FoM(Walden), and FoM(Schreier) were 66.3 dB, 10.6 bits, 83 dB, 98 pJ/step, and 142.8 dB at the sampling frequency of 256kHz, oversampling ratio of 128, clock frequency of 1.024 MHz, and input frequency of 250 Hz, respectively.

3D Porous Foam-based Triboelectric Nanogenerators for Energy Harvesting (3차원 기공구조를 이용한 정전기반 에너지 하베스팅 나노발전기 소자제조)

  • Jeon, Sangheon;Jeong, Jeonghwa;Hong, Suck Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Here, we present a facile route to fabricate a vertically stacked 3D porous structure-based triboelectric nanogenerator (TENG) that can be used to harvest energy from the friction in a repetitive contact-separation mode. The unit component of TENG consists of thin Al foil electrodes integrated with microstructured 3D foams such as Ni, Cu, and polyurethane (PU), which provide advantageous tribo-surfaces specifically to increase the friction area to the elastomeric counter contact surfaces (i.e., polydimethylsiloxane, PDMS). The periodic contact/separation-induced triboelectric power generation from a single unit of the 3D porous structure-based TENG was up to $0.74mW/m^2$ under a mild condition. To demonstrate the potential applications of our approach, we applied our TENGs to small-scale devices, operating 48 LEDs and capacitors. We envision that this energy harvesting technology can be expanded to the applications of sustainably operating portable electronic devices in a simple and cost-effective manner by effectively harvesting wasted energy resources from the environment.

Development of the Semi-Crawler Type Mini-Forwarder - Design and Manufacture - (반궤도식 산림작업차 개발(I) - 설계 및 제작 -)

  • Kim, Jae-Hwan;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.154-164
    • /
    • 2011
  • This study was conducted to develop the semi-crawler type mini-forwarder that can be operated comfortable small-scale logging operation in the steep terrain and also used at a variety of operations such as the civil work in erosion control and forest-road. Considering the minimum turning radius and the width of forest operation road, the total length, width and loading capacity of the semi-crawler type mini-forwarder is 5,750 mm, 1,900 mm and $2.5m^{3}$, respectively. The maximum engine power is 96ps at 3600 rpm. Selected hydraulic pumps are consists of two main pumps and two sub-main pumps. Main hydraulic pumps are utilized to running motor of the front wheel and rear crawler. Sub-main pumps are utilized to the actuation parts such as steering, crane, out-rigger and dump cylinder. The transmission was adapted as the HST (Hydro-Static Transmission) system. The driving parts are designed and manufactured as the front wheel type and the rear crawler type. The steering type was manufactured as the ackerman type. Driving control parts type was designed and manufactured as driver's seat type of normal cars. It is also attached on auxiliary equipments such as winch, log grapple and out-rigger. The traveling speed of the semi-crawler type mini-forwarder in forest road was 5.3 km/hr to 7.7 km/hr.

Development of Pressure Correction System for Surface Vessel to Ensure Reliability of Compartment Test Result (수상함 격실기밀시험 결과의 신뢰성 확보를 위한 압력 보정 시스템 개발)

  • Min, Il-Hong;Kim, Jun-Woo;Son, Gi-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.409-414
    • /
    • 2021
  • Tightness performance that blocks compartments is important for surface ships to achieve superior mission performance and survivability in combat environments. To meet the above requirements, airtightness of the structural elements and the appropriate strength to specific areas are checked during a test run after ship construction. In particular, air tests of compartments adjacent to the water surface are performed. In an air test, air is injected into the compartment up to the test pressure of the test memo. The pressure drop value is checked after 10 minutes to determine if the requirements of the corresponding area are satisfied. In summer, however, when the influence of the outside temperature is large, a phenomenon in which the internal pressure increases during the air test was identified. This phenomenon reduces the reliability of the test result. Therefore, a system was designed to compensate for temperature changes in the compartments through this study. The developed system calculates the amount of pressure change caused by a temperature change in the compartment and outputs a correction value. The pressure change was calculated using the ideal gas equation, reflecting the maintenance, increase, and decrease in temperature during the test process. A comparison of the calculated pressure correction value with the database of NIST REFPROP revealed a difference of 0.126% to a maximum of 0.253%.

Development of High Energy X-ray Dose Measuring Device based Ion Chamber for Cargo Container Inspection System (이온전리함 기반의 컨테이너 검색용 고에너지 X-선 선량 측정장치 개발)

  • Lee, Junghee;Lim, Chang Hwy;Park, Jong-Won;Lee, Sang Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1711-1717
    • /
    • 2020
  • X-ray of up to 9MeV are used for container inspection. X-ray intensity must be maintained stably regardless of changes in time. If dose is not constant, it may affect the image quality, and as a result, may affect the inspection of abnormal cargo. Therefore, to acquire high-quality images, continuous dose monitoring is required. In this study, the ion-chamber based device was developed for monitoring the dose change in high-energy x-ray. And to estimate the performance of signal-processing device change according to the environmental change, the output changing due to the change of temperature and humidity was observed. In addition, verification of the device was performed by measuring the output change. As a result of the measurement, there was no significant difference in performance due to changes in temperature and humidity, and the change in output according to the change in exposure was linear. Therefore, it was found that the developed device is suitable for the dose monitoring of high-energy x-ray.

The Power Converter Circuit Characteristics for 3 kW Wireless Power Transmission (3 kW 무선 전력전송을 위한 전력 변환기 회로 특성)

  • Hwang, Lark-Hoon;Na, Seung-kwon;Kim, Jin Sun;Kang, Jin-hee
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.566-572
    • /
    • 2020
  • In a wireless power transmitter, the characteristics and effects of wireless power transmission between two induction coils are investigated, and a power converter circuit and a battery charger/discharger circuit using wireless power transmission technology are proposed. The advantage of wireless power transmitters and wireless chargers is that, instead of the existing plug-in-mounted wired charger (OBC; on-board charger), the user can wirelessly charge the battery without connecting the power source when charging power to the battery. There is. In addition, the advantage of wireless charging can bring about an energy efficiency improvement effect by using the secondary side rectifier circuit and the receiving coil, but the large-capacity long-distance wireless charging method has a limitation on the transmission distance, so many studies are currently being conducted. The purpose of the study is to study the transmitter circuit and receiver circuit of a wireless power transmission device using a primary coil, a secondary coil, and a half bridge series resonance converter, which can transmit power of a non-contact type power transmitter. As a result, a new topology was applied to improve the power transmission distance of the wireless charging system, and through an experiment according to each distance, the maximum efficiency (95.8%) was confirmed at an output of 3 kW at an 8 cm transmission distance.

Experimental Study for Evaluating Early Age Shrinkage of Mortar for 3D Printing (3D 프린팅용 모르타르의 초기재령 수축거동 평가를 위한 실험적 연구)

  • Seo, Eun-A;Yang, Keun-Hyeok;Lee, Ho-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.76-83
    • /
    • 2022
  • Since the 3D printing mortar is exposed to the atmosphere immediately after printing, moisture is largely evaporated from the surface of the layer. The evaporation of moisture on the surface of the layer greatly causes drying shrinkage and increases the risk of cracking and damage to the structure due to drying shrinkage. This study experimentally evaluated the shrinkage behavior of the initial age using the mortar used for 3D printing. The change in shrinkage was evaluated by comparing the shrinkage of the specimen cured by the sealing method and the atmospheric exposure method. In addition, compared with the case where type 1 cement was used 100%, the shrinkage amount was evaluated when 20% of fly ash was replaced and 10% of silica fume was used. In particular, the effect of three chemical admixtures applied using 3D printing on shrinkage was evaluated experimentally. When fly ash and silica fume were used, the shrinkage amount increased by 60 - 110% compared to the case when type 1 cement was used. The application of viscosity modifiers and shrinkage reducers reduced the shrinkage by at least 18% and at most 70% depending on the curing conditions. The temperature of the specimen temporarily decreased to 15 ℃ at the beginning of curing, and the correlation between the internal temperature of the specimen and the shrinkage behavior was observed.

A study on the cold forging die geometry optimal design for forging load reduction (성형하중 감소를 위한 냉간단조금형 최적설계에 관한 연구)

  • Hwang, Joon;Lee, Seung-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.6
    • /
    • pp.251-261
    • /
    • 2022
  • This paper describes the finite element analysis and die design change of spring retainer forging process to reduce the cold forging load and plastic forming stress concentration. Plastic deformation analysis was carried out in order to understand the forming process of workpieces and elastic stress analysis of the die set was performed in order to get basic data for the die fatigue life estimation. Cold forging die design was set up to each process with different four types analysis progressing, the upper and lower dies shapes with combination of fillets and chamfers shapes of cold forging dies. This study suggested optimal cold forging die geometry to reduce cold forging load. The design parameters of fillets and chamfers are selected geometry were selected to apply optimization with the DoE (design of experiment) and Taguchi method. DoE and Taguchi method was performed to optimize the workpiece preform shape for spring retainer forging process, it was possible to expect an increase in cold forging die life due to the 20 percentage forging load reduction.

Effect of Ultrasonic Irradiation on Ozone Nanobubble Process for Phenol Degradation (페놀 분해를 위한 오존 나노기포 공정에서 초음파 조사의 영향)

  • Lee, Sangbin;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.23-29
    • /
    • 2022
  • In this study, we investigated the ozone nanobubble process in which nanobubble and ultrasonic cavitation were applied simultaneously to improve the dissolution and self-decomposition of ozone. To confirm the organic decomposition efficiency of the process, a 200 mm × 200 mm × 300 mm scale reactor was designed and phenol decomposition experiments were conducted. The use of nanobubble was 2.07 times higher than the conventional ozone aeration in the 60 minutes reaction and effectively improved the dissolution efficiency of ozone. Ultrasonic irradiation increased phenol degradation by 36% with nanobubbles, and dissolved ozone concentration was lowered due to the promotion of ozone self-decomposition. The higher the ultrasonic power was, the higher the phenol degradation efficiency. The decomposition efficiency of phenol was the highest at 132 kHz. The ozone nanobubble process showed better decomposition efficiency at high pH like conventional ozone processes but achieved 100% decomposition of phenol after 60 minutes reaction even at neutral conditions. The effect by pH was less than that of the conventional ozone process because of self-decomposition promotion. To confirm the change in bubble properties by ultrasonic irradiation, a Zetasizer was used to measure the bubbles' size and zeta potential analysis. Ultrasonic irradiation reduced the average size of the bubbles by 11% and strengthened the negative charge of the bubble surface, positively affecting the gas transfer of the ozone nanobubble and the efficiency of the radical production.