• Title/Summary/Keyword: 최대의 변형량

Search Result 308, Processing Time 0.033 seconds

A numerical study on squeezing of overstressed rock around deep tunnels (심부 터널 주변 과응력 암반의 압출 거동에 관한 수치해석적 연구)

  • Lee, Kun-Chai;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.557-568
    • /
    • 2016
  • Squeezing is a phenomenon that may occur in deep tunneling and could bring about a large plastic deformation, tunnel closure and collapse of tunnel supports. Therefore, quantitative estimations of deformation and stress from squeezing and its possibility are necessary for establishment of a rational tunneling method. This study carried out three dimensional numerical analyses using a strain softening model in order to simulate the behaviour of squeezing and to estimate deformation and yield area around tunnels quantitatively. Numerical analyses were performed for 42 cases of various stress and strength conditions. As a result, the maximum tangential stress and strength of rock mass ratio could estimate plastic deformation and yield depth around tunnels and equations of relations between them were proposed.

Analyzing anomalies of air-gap flux patterns due to the short-circuit fault currents appearing in rotor windings of a generator (발전기 회전자 권선의 단락사고 유형에 따른 공극자속 파형의 변형도 분석)

  • Kim, Dong-Hun;Lee, Kang-Jin;Lee, Il-Ho;Song, Myung-Kon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.28-30
    • /
    • 2006
  • 본 논문에서는 대용량 동기발전기 회전자 권선의 다양한 단락사고 유형에 따라 발생하는 공극자속 파형의 변형정도에 대한 민감도해석을 수행하였다. 우선 정밀 전자장 수치해석도구를 이용하여 발전기 회전자 권선의 단락사고 유형에 대한 과도상태 해석을 수행하여 공극자속 파형에 대한 기본 데이터를 수집하였다. 이를 바탕으로 정상상태의 공극자속 파형을 기준으로 각 단락사고 유형별로 발생하는 공극자속 파형에 대한 최대 전압차에 다구찌법을 적용하여 Signal to Nose(SN) ratio 및 Percentage Contribution(PC) 등을 분석함으로써 단락사고 유형에 따른 공극자속 파형의 변형정도를 정량화하였다. 따라서 본 연구결과는 향후 대용량 발전기 회전자 단락사고 진단 및 감시 시스템 구축에 관련한 분야에 중요한 기초데이터로 활용될 것으로 사료된다.

  • PDF

Tapered Joint Design for Power Transmission of MW-grade Wind Turbine (MW급 풍력발전기 동력전달용 테이퍼 연결장치 설계에 관한 연구)

  • Kang, JongHun;Bae, JunWoo;On, Hanyong;Kwon, Yongchul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1183-1189
    • /
    • 2015
  • This study focuses on the design of the tapered joints of a wind power turbine. The main variables of the tapered joint are the transmitted torque, shaft diameter, contact area of the tapered ring, and tightening torque of the bolts, which applies a compressive pressure from the hub to the shaft. The stress distribution of the taper fit was calculated under axisymmetric plane strain conditions because of the small taper angle. The axial displacement of the clamp can be calculated from the radial elastic deformation and the taper angle. The stress field of each ring is obtained from the cylinder stress equation. To verify the accuracy of the calculation, finite element (FE) analysis was performed, and the results of the calculation and FE analysis were compared. The hoop stress of the tapered surface showed a discrepancy of approximately 10, but the trends of the stress distributions of each component and the relative movement obtained by FE analysis were in good agreement with the analytical calculation results.

Study on the Heat Deformation of ESW Welding (ESW 용접의 열변형에 관한 연구)

  • Yun, Dong-Won;Park, Hee-Chang;Lee, In-Cheol;Kim, Sang-Yong;Park, No-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1123-1124
    • /
    • 2011
  • 본 논문에서는 ESW(Electro slag welding)의 용접을 위한 해석을 수행하였다. 특히, 열전달 해석을 통하여 부재내부에 발생하는 온도분포에 대한 해석을 수행하였으며, 이를 입력조건으로 하여 구조해석을 수행함으로써, 최종적은 부재내의 최고온도와 최대 변형량을 구할 수 있었다.

  • PDF

Ultimate Strength of branch-rotated T-joints in Cold-formed Square Hollow Sections - Chord flange failure mode - (지관이 회전된 냉간성형 각형강관 T형 접합부의 최대내력(I) - 주관 플랜지 파괴모드 -)

  • Bae, Kyu Woong;Park, Keum Sung;Kang, Chang Hoon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.657-664
    • /
    • 2002
  • This paper described the ultimate strength and deformation limit of the new uniplanar T-joints in cold-formed square hollow sections. In the configuration of the new T-joint, only a branch member is orientated to a chord member at 45 degrees in the plane of the truss. This study focused on the branch-rotated T-joints that were governed by chord flange failure in previous studies. Test results of the T-joint in cold-formed square hollow sections revealed a deformation limit of 3%B for $16.7{\leq}2{\gamma}(=B/T){\leq}33.3$ and $0.27{\leq}{\beta}(=b1/B){\leq}0.6$. The existing strength formulae for traditional T-joint were determined and a new yield-line model for the branch-rotated T-joint proposed. Finally, the strength formula on the yield-line analysis was compared with test results and the application range of the proposed formula recommended.

The Analysis of Elasto-Plastic Thermal Stresses for Welding Part in Double Capstan Drum (더블 캡스턴 드럼의 용접부에 대한 탄소성 열응력해석)

  • 김옥삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.4
    • /
    • pp.329-336
    • /
    • 2000
  • Welding is a important technological method in mechanical engineering. $CO_2$MAG(metal active gas) welding means that metal part in double capstan drum for the inshore and costal vessels are joined by melting(with or without a filler material) or that new material is added to a metal part by melting. The thermal stresses appear due to a non-uniform temperature field, inhomogeneous material properties, external restraint and volume changes during phase transformations. In this study analysis the elasto-plastic thermal stresses distribution of welding part in double capstan drum for the inshore and costal vessels using finite element method (FBM). Therefore it calculates the numerical value that can be applied to the optimum design of welding parts and the shapes. The significant results obtained in this study are summarized as fellows. At early stage of the cooling after welding process, the abrupt thermal stresses gradient has been shown in the vicinity of welding part. In the thermal stresses analysis due to temperature gradient and heat shocking maximum stress was occurred of welding part and stresses were distributed from 54MPa~48MPa.

  • PDF

A Study on the HAE UN DAE Beach Deformation Caused by the Construction of a Sea Wall (해운대 해수욕장 침식에 미치는 해안제방의 영향에 대하여)

  • Mun, Byeong-Hyeong;Kim, Ga-Ya;Lee, Seung-Hwi
    • Water for future
    • /
    • v.17 no.3
    • /
    • pp.197-209
    • /
    • 1984
  • This study has been carried out to investigate into the local scour of wall-toe and the beach deformation caused by the construction of a seal wall. It has been performed to determine the values of the marine invertigation of HAE UN DAE and two dimensional Movable bed gydraulic model test. From the results of this work approtection method of HAE UN DAE beach erosion is established to reduce the amount of topography deformation by investigating the values of the constructive position of a sea wall, seabed slope, the maximum scour depth, the first and the second influence range, the maximum quantity of beach deformation, and the distance measured from the sea will to the maximum quantity of beach deformation.

  • PDF

Simplified Collision Analysis Method for Submerged Floating Railway Using the Theory of a Beam with an Elastic Foundation (탄성지지 보이론을 이용한 해중철도 간이 충돌해석법)

  • Seo, Sung-Il;Kim, Jin Sung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.202-206
    • /
    • 2013
  • A submerged floating railway is an innovative tunnel infrastructure passing through the deep sea independent of wave and wind so that high speed trains can run on it. It doesn't depend on water depth and is cost effective due to modular construction on land. The construction period can be reduced drastically. This paper introduces the concept design of a submerged floating railway, and for securing safety, proposes a method to analyze the structural behavior of the body in case of collision with a submarine. The theory of a beam with an elastic foundation was used to calculate the equivalent mass of the body so that the perfect elastic collision could be applied to calculate the collision velocity. The maximum deformation and bending moment was analyzed based on energy conservation. To verify the results, a collision analysis using a finite element analysis code was made. Comparing the results confirmed that this simplified collision analysis method gives enough accurate deformation and bending moment to be used for actual estimation in the initial design stage.

A Convergent Investigation on the Structural Analysis of Leaf Spring at Large Truck (대형트럭에서의 판스프링의 구조해석에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.155-159
    • /
    • 2020
  • In this study, the structural analyses were performed on the number of leaf springs in large truck. The deformations were small for all four models. The maximum stress of model A was found to be the largest, and that of model D was the smallest. Model A was seen about 1.87 times larger than model D and about 1.52 times larger than model B. The maximum stresses of models C and D were seen to be less. In terms of the effect to reinforce one more overlapping spring, The effect of the enhancement of the strength of model D was shown to be small by comparing with model C. Therefore, model C with three overlapping springs is thought to be efficient in design and good in strength. The structural strength of leaf spring can be evaluated by applying this study result to the leaf spring at large truck. And it is seen that the result can be the design of the leaf spring with durability at large truck and the aesthetic convergence.

A Study on the Slipping Down Safety of Vertical Interval for High Voltage Cable using FEM (유한요소법을 이용한 초고압 케이블 수직구간 활락 안전성에 관한 연구)

  • Lee, Ji-Hun;Choi, Seong-Kook;Yim, Ik-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.564-565
    • /
    • 2011
  • 본 연구는 154 kV, 345 kV급 초고압 케이블의 수직구간 활락 안전성에 대한 평가를 진행하였다. 안전성에 대한 평가는 유한요소해석법을 이용하여 진행하였으며, 당사에서 제작한 케이블 및 클리트에 대하여 케이블의 자중과 발열에 따른 제품 내부의 응력과 케이블의 변형량에 초점을 맞추어 비교 분석하였다. 해석 결과, 하중 및 발열에 대해 재료의 인장강도 측면에서 충분한 안전율을 가지고 있는 것으로 나타났으며, 변위 해석 또한 최대 변위 발생부가 최대 응력 발생부와 관계없는 케이블 끝단에서 나타나는 것으로 볼 때, 재료 건전성 측면에서 안전한 것으로 해석되었다. 본 연구는 향후 경사지나 수직구간의 포설 설계시 해석적 방법으로 포설 안전성을 확보하는데 기여할 수 있을 것으로 사료된다.

  • PDF